The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-β3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115551DOI Listing

Publication Analysis

Top Keywords

alginate nanogels
12
controlled release
8
tissue engineering
8
bioactive agents
8
promoted chondrogenesis
4
chondrogenesis hmcss
4
hmcss controlled
4
release tgf-β3
4
tgf-β3 microfluidics
4
microfluidics synthesized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!