A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties. | LitMetric

Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties.

Carbohydr Polym

Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain. Electronic address:

Published: February 2020

New chitosan-reinforced cellulosic bionogels were successfully formulated with different chitosan loadings (0.25, 0.5, 0.75, and 1 wt/wt. %). These materials were developed using cholinium lysinate, a bio-ionic liquid, being an ecological alternative to conventional ionogels. The rheological properties of these materials showed that all the studied viscoelastic properties were higher (elastic moduli, G'; loss moduli, G"; and complex viscosity, η*) as the chitosan loading increased. The reinforced bionogels were physical weak gels, and the proposed mechanism of formation was by hydrogen bonds. The bionogel with 1 wt/wt. % chitosan loading exhibited the highest viscoelastic properties (for 4 Hz, G': 552 kPa, G": 99 kPa, and η*: 22 kPa·s). Regarding the antibacterial properties, these gels showed a good inhibitory capacity to S. aureus and E. coli, especially against the latter bacterium. For these reasons, these novel ecofriendly gels are promising in the pharmaceutical/medical and biosensors sectors to develop new functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115569DOI Listing

Publication Analysis

Top Keywords

chitosan-reinforced cellulosic
8
cellulosic bionogels
8
antibacterial properties
8
viscoelastic properties
8
chitosan loading
8
properties
5
bionogels viscoelastic
4
viscoelastic antibacterial
4
properties chitosan-reinforced
4
bionogels formulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!