Synthesis of chitosan iodoacetamides via carbodiimide coupling reaction: Effect of degree of substitution on the hemostatic properties.

Carbohydr Polym

Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695-8301, United States. Electronic address:

Published: February 2020

Uncontrolled hemorrhage continues to be the leading cause of death from traumatic injuries both in the battlefield and in the civilian life. Chitosan is among the very few materials that have made the short list of military recommended field-deployable hemostatic dressings. However, the detailed mechanism of its action is still not fully understood. Moreover, in the cases when patients developed coagulopathy, the efficacy of the dressings rely solely on those mechanisms that work outside of the regular blood coagulation cascade. In addition to the well-known erythrocyte agglutination, we proposed to use the reactive N-iodoacetyl group on a new chitosan derivative to accelerate hemostasis. In this paper, we describe the synthesis of chitosan iodoacetamide (CI) with considerations of the stoichiometry among the reagents, the choice of solvent, the pH of the reaction medium, and the reaction time. The reaction was confirmed by FT-IR, H and C NMR, elemental analysis, iodine content analysis, and SEM-EDS. Water contact angle measurements and Erythrocyte Sedimentation Rate (ESR) method were used to evaluate the hemostatic potential of the newly synthesized CI as a function of their degree of substitution (DS). The range of DS was 5.9% to 27.8% for CI. The mid-range of DS gave the best results for the ESR. CIs exhibit favorable cytocompatibilities up to DS 18.7 compared to the generic unmodified chitosan. In general, the biocompatibility of chitosan iodoacetamide slightly declined with increasing the iodide content up to DS 21.5 owing to its affinity to SH groups of cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115522DOI Listing

Publication Analysis

Top Keywords

synthesis chitosan
8
degree substitution
8
chitosan iodoacetamide
8
chitosan
5
chitosan iodoacetamides
4
iodoacetamides carbodiimide
4
carbodiimide coupling
4
reaction
4
coupling reaction
4
reaction degree
4

Similar Publications

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.

View Article and Find Full Text PDF

3D Printing Organogels with Bioderived Cyrene for High-Resolution Customized Hydrogel Structures.

Langmuir

January 2025

Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.

3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.

View Article and Find Full Text PDF

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent form of late-life dementia. The ε2 allele of the APOE gene encoding apolipoprotein E (APOE2) is associated with lower susceptibility to AD among the three genotypes (ε2, ε3, ε4), while APOE4 is the strongest genetic risk factor for late-onset AD. APOE plays a critical role in maintaining synaptic plasticity and neuronal function by controlling lipid homeostasis, with APOE2 having a superior function.

View Article and Find Full Text PDF

Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!