A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stable depletion of RUNX1-ETO in Kasumi-1 cells induces expression and enhanced proteolytic activity of Cathepsin G and Neutrophil Elastase. | LitMetric

The oncogenic fusion protein RUNX1-ETO is a product of the t(8;21) translocation and consists of the hematopoietic transcriptional master regulator RUNX1 and the repressor ETO. RUNX1-ETO is found in 10-15% of acute myeloid leukemia and interferes with the expression of genes that are essential for myeloid differentiation. The neutrophil serine protease Cathepsin G is one of the genes suppressed by RUNX1-ETO, but little is known about its impact on the regulation of other lysosomal proteases. By lentiviral transduction of the t(8;21) positive cell line Kasumi-1 with an RUNX1-ETO specific shRNA, we analyzed long-term effects of stable RUNX1-ETO silencing on cellular phenotypes and target gene expression. Stable anti RUNX1-ETO RNAi reduces both proliferation and apoptosis in Kasumi-1 cells. In addition, long-term knockdown of RUNX1-ETO leads to an upregulation of proteolytic activity in Kasumi-1 cells, which may be released in vitro upon cell lysis leading to massive degradation of cellular proteins. We therefore propose that protein expression data of RUNX1-ETO-silenced Kasumi-1 cells must be analyzed with caution, as cell lysis conditions can heavily influence the results of studies on protein expression. Next, a mass spectrometry-based approach was used to identify protease cleavage patterns in RUNX1-ETO-depleted Kasumi-1 cells and Neutrophil Elastase has been identified as a RUNX1-ETO candidate target. Finally, proteolytic activity of Neutrophil Elastase and Cathepsin G was functionally confirmed by si/shRNA-mediated knockdown in Kasumi-1 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905530PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225977PLOS

Publication Analysis

Top Keywords

kasumi-1 cells
24
proteolytic activity
12
neutrophil elastase
12
runx1-eto
9
cell lysis
8
protein expression
8
kasumi-1
7
cells
6
expression
5
stable depletion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!