AI Article Synopsis

Article Abstract

Astragaloside IV (AS-IV) is an active component extracted from the traditional Chinese herbal medicine. AS-IV is a neuroprotective component in cerebral ischemic models. However, roles of AS-IV in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms are rarely investigated. The role of AS-IV in oxygen - glucose deprivation reoxygenation (OGD/R)-induced cell proliferation and apoptosis assays were analyzed by Cell Counting Kit-8 and Flow cytometric. Western Blot assays were performed to measure the related expression levels in SH-SY5Y cells. Meanwhile, activities of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in OGD/R-induced cells were determined by relative commercial kits. AS-IV was also used in cerebral I/R rat model, aimed to investigate the effects on cerebral infarct. The results indicated that OGD/R suppressed viability, enhanced apoptosis, which could be reversed by AS-IV treatment. Compared with the control group, the expression of p-JAK2 and p-STAT3 was significantly increased by AS-IV (60 μg/mL) under the OGD/R condition. Furthermore, AS-IV (60 μg/mL) treatment markedly increased SOD activity, whereas significantly decreased MDA activity and production of ROS in OGD/R-induced cells. The protective effects of AS-IV mentioned above were weaken or abolished while adding JAK2 inhibitor AG490. In addition, the effects of AS-IV on Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling in cerebral I/R injury were also verified in vivo. AS-IV protected against cerebral I/R injury and reversed by AG490. Therefore, in vitro and in vivo analyses suggested that AS-IV may protect against cerebral I/R injury partly mediated by JAK2/STAT3 signaling pathway and antioxidative effects. AS-IV may serve as a novel therapeutic regimen for cerebral I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000503361DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
cerebral i/r
20
as-iv
13
effects as-iv
12
cerebral
9
cerebral ischemia-reperfusion
8
janus kinase
8
kinase signal
8
signal transducer
8
transducer activator
8

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!