Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Language model (LM) plays an important role in natural language processing (NLP) systems, such as machine translation, speech recognition, learning token embeddings, natural language generation, and text classification. Recently, the multilayer long short-term memory (LSTM) models have been demonstrated to achieve promising performance on word-level language modeling. For each LSTM layer, larger hidden size usually means more diverse semantic features, which enables the LM to perform better. However, we have observed that when a certain LSTM layer reaches a sufficiently large scale, the promotion of overall effect will slow down, as its hidden size increases. In this article, we analyze that an important factor leading to this phenomenon is the high correlation between the newly extended hidden states and the original hidden states, which hinders diverse feature expression of the LSTM. As a result, when the scale is large enough, simply lengthening the LSTM hidden states will cost tremendous extra parameters but has little effect. We propose a simple yet effective improvement on each LSTM layer consisting of a large-scale Major LSTM and a small-scale Minor LSTM to break the high correlation between the two parts of hidden states, which we call Major-Minor LSTMs (MMLSTMs). In experiments, we demonstrate the LM with MMLSTMs surpasses the existing state-of-the-art model on Penn Treebank (PTB) and WikiText-2 (WT2) data sets and outperforms the baseline by 3.3 points in perplexity on WikiText-103 data set without increasing model parameter counts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2019.2947563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!