Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pain sensation is essential for survival, since it draws attention to physical threat to the body. Pain assessment is usually done through self-reports. However, self-assessment of pain is not available in the case of noncommunicative patients, and therefore, observer reports should be relied upon. Observer reports of pain could be prone to errors due to subjective biases of observers. Moreover, continuous monitoring by humans is impractical. Therefore, automatic pain detection technology could be deployed to assist human caregivers and complement their service, thereby improving the quality of pain management, especially for noncommunicative patients. Facial expressions are a reliable indicator of pain, and are used in all observer-based pain assessment tools. Following the advancements in automatic facial expression analysis, computer vision researchers have tried to use this technology for developing approaches for automatically detecting pain from facial expressions. This paper surveys the literature published in this field over the past decade, categorizes it, and identifies future research directions. The survey covers the pain datasets used in the reviewed literature, the learning tasks targeted by the approaches, the features extracted from images and image sequences to represent pain-related information, and finally, the machine learning methods used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2019.2958341 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!