Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics.

J Am Chem Soc

Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry , Jiangxi University of Science and Technology, Ganzhou 341000 , P. R. China.

Published: January 2020

As a major branch of hybrid perovskites, two-dimensional (2D) hybrid double perovskites are expected to be ideal systems for exploring novel ferroelectric properties, because they can accommodate a variety of organic cations and allow diverse combinations of different metal elements. However, no 2D hybrid double perovskite ferroelectric has been reported since the discovery of halide double perovskites in the 1930s. Based on trivalent rare-earth ions and chiral organic cations, we have designed a new family of 2D rare-earth double perovskite ferroelectrics, AMM(NO), where A is the organic cation, M is the alkaline metal or ammonium ion, and M is the rare-earth ion. This is the first time that ferroelectricity is realized in 2D hybrid double perovskite systems. These ferroelectrics have achieved high-temperature ferroelectricity and photoluminescent properties. By varying the rare-earth ion, variable photoluminescent properties can be achieved. The results reveal that the 2D rare-earth double perovskite systems provide a promising platform for achieving multifunctional ferroelectricity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b11697DOI Listing

Publication Analysis

Top Keywords

double perovskite
20
rare-earth double
12
hybrid double
12
perovskite ferroelectrics
8
double perovskites
8
organic cations
8
rare-earth ion
8
perovskite systems
8
photoluminescent properties
8
double
7

Similar Publications

This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.

View Article and Find Full Text PDF

A Chain Entanglement Gelled SnO₂ Electron Transport Layer for Enhanced Perovskite Solar Cell Performance and Effective Lead Capture.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.

SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.

View Article and Find Full Text PDF

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

This work reports on the preparation process of a double-layer perovskite active layer. The first active layer film, CsKPEAPbIBr, was fabricated using a spin-coating method, while the second active layer, MAPbBr, was deposited using MAPbBr single crystals as the evaporation source. Additionally, doping the PEDOT: PSS hole transport layer with ETA and EDA can enhance the uniformity of the perovskite film and reduce voids, improving charge transport efficiency.

View Article and Find Full Text PDF

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!