Focused high-energy extracorporeal shockwave therapy (fhESWT) is used to improve fracture healing in cases of nonunion. In addition, it has been shown to have direct antibacterial effects. We evaluated fhESWT as an adjunct to conventional treatment in a clinically relevant rabbit model of fracture-related infection (FRI). A humeral osteotomy in 31 rabbits was fixed with a seven-hole locking compression plate. FRI was established with a clinical Staphylococcus aureus isolate. After 2 weeks, a revision surgery was performed with debridement, irrigation, and implant retention. Rabbits then received: no further treatment (controls); shockwaves (4000 impulses with 23 kV at days 2 and 6 after revision); systemic antibiotics (rifampin and nafcillin); or the combination of antibiotics and shockwaves. Treatments were applied over 1 week. Blood cultures were taken before and after shockwave sessions. After another week without treatment, rabbits were euthanized and quantitative bacteriology was performed on implants and tissues to determine infection burden. Indicator organs (brain, heart, liver, lungs, kidneys, and spleen) were cultured to assess possible bacteremia. All the rabbits were infected at revision surgery as determined by the bacteriological culture of debrided materials. fhESWT in combination with antibiotic treatment lowered the bacterial burden 100-fold compared with antibiotic treatment alone in all samples (P = .38). This effect was most prevalent for the implant sample (P = .08). No significant effect was seen for fhESWT alone compared with untreated controls. No signs of bacteremia occurred in blood cultures and organs. fhESWT appears safe and could be a helpful adjunct to conventional treatment in certain difficult-to-treat FRIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.24565 | DOI Listing |
Materials (Basel)
January 2025
Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.
The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro Seongbuk-gu, Seoul 02841, Republic of Korea.
Distal tibia fractures are high-energy injuries characterized by a mismatch between standard plate designs and the patient's specific anatomical bone structure, which can lead to severe soft tissue damage. Recent advancements have focused on the development of customized metal plates using three-dimensional (3D) printing technology. However, 3D-printed metal plates using titanium alloys have not incorporated a locking system due to the brittleness of these alloys.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China.
Ferroelectric materials hold immense potential for diverse applications in sensors, actuators, memory storage, and microelectronics. The discovery of two-dimensional (2D) ferroelectrics, particularly ultrathin compounds with stable crystal structure and room-temperature ferroelectricity, has led to significant advancements in the field. However, challenges such as depolarization effects, low Curie temperature, and high energy barriers for polarization reversal remain in the development of 2D ferroelectrics with high performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!