Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three copper redox shuttles ([Cu(1)]2+/1+, [Cu(2)]2+/1+, and [Cu(3)]2+/1+) featuring tetradentate ligands were synthesized and evaluated computationally, electrochemically, and in dye-sensitized solar cell (DSC) devices using a benchmark organic dye, Y123. Neutral polyaromatic ligands with limited flexibility were targeted as a strategy to improve solar-to-electrical energy conversion by reducing voltage losses associated with redox shuttle electron transfer events. Inner-sphere electron transfer reorganization energies (λ) were computed quantum chemically and compared to the commonly used [Co(bpy)3]3+/2+ redox shuttle which has a reported λ value of 0.61 eV. The geometrically constrained biphenyl-based Cu redox shuttles investigated here have lower reorganization energies (0.34-0.53 eV) and thus can potentially operate with lower driving forces for dye regeneration (ΔGreg) in DSC devices when compared to [Co(bpy)3]3+/2+-based devices. The rigid tetradentate ligand design promotes more efficient electron transfer reactions leading to an improved JSC (14.1 mA cm-2), higher stability due to the chelate effect, and a decrease in VlossOC for one of the copper redox shuttle-based devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt04030g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!