CO conversion to phenyl isocyanates by uranium(vi) bis(imido) complexes.

Chem Commun (Camb)

Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal.

Published: January 2020

Uranium(vi) trans-bis(imido) complexes [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(NPhR)] react with CO2 to eliminate phenyl isocyanates and afford uranium(vi) trans-[O[double bond, length as m-dash]U[double bond, length as m-dash]NR]2+ complexes, including [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)] that was crystallographically characterized. DFT studies indicate that the reaction proceeds by endergonic formation of a cycloaddition intermediate; the secondary reaction to form a dioxo uranyl complex is both thermodynamically and kinetically hindered.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc07411bDOI Listing

Publication Analysis

Top Keywords

phenyl isocyanates
8
bond length
8
conversion phenyl
4
isocyanates uraniumvi
4
uraniumvi bisimido
4
bisimido complexes
4
complexes uraniumvi
4
uraniumvi trans-bisimido
4
trans-bisimido complexes
4
complexes [uκ4-{tbu2aro2me2-cyclam}nphnphr]
4

Similar Publications

,'-Di-benzyl-ethyl-enedi-ammonium dichloride.

Acta Crystallogr E Crystallogr Commun

October 2024

University of South Alabama, Department of Chemistry 6040 USA Drive South Mobile Alabama 36608 USA.

The isolation and crystalline structure of ,'-di-benzyl-ethyl-enedi-ammonium dichloride, CHN ·2Cl, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzyl-amine as one of the reagents and 1,2-di-chloro-ethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome.

View Article and Find Full Text PDF

A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles -, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one - and -. The starting compound was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of with strong electrophiles, namely, -aminophenol, -amino thiophenol, and/or -phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles -.

View Article and Find Full Text PDF

Recent experiments in polariton chemistry indicate that reaction rates can be significantly enhanced or suppressed inside an optical cavity. One possible explanation for the rate modulation involves the cavity mode altering the intramolecular vibrational energy redistribution (IVR) pathways by coupling to specific molecular vibrations in the vibrational strong coupling (VSC) regime. However, the mechanism for such a cavity-mediated modulation of IVR is yet to be understood.

View Article and Find Full Text PDF

The potassium metal reduction of aryl isocyanates (aryl = phenyl, -tolyl, 3,5-dimethylphenyl, 4-biphenylyl, and 1-naphthyl) in THF with 18-crown-6 or in HMPA results in the formation of the corresponding triaryl isocyanurate anion radicals. Continued exposure to potassium results in loss of the isocyanurate anion radical and the eventual formation of the respective biaryl anion radical. The 1,1'-binaphthyl anion radical is found to undergo a cyclodehydrogenation reaction, which leads to formation of the perylene anion radical.

View Article and Find Full Text PDF

Fabrication of nanogels to improve the toxicity and persistence of cycloxaprid against Diaphorina citri, the vector of citrus huanglongbing.

J Adv Res

September 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

Introduction: Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!