In the last years, important progresses have been registered in the treatment of patients suffering from oncological/haematological malignancies, but more still needs to be done to reduce toxicity and side effects, improve outcome and offer new strategies for relapsed or refractory disease. A remarkable part of these clinical benefits is due to advances in immunotherapy. Here, we investigate the generation of a novel, universal and ready-to-use immunotherapeutic product based on γδ-T lymphocytes. These cells are part of the innate immune system, exerting potent natural cytotoxicity against bacteria, viruses and tumours. This ability, coupled with their negligible alloreactivity, makes them attractive for adoptive immunotherapy approaches. To achieve a cell product suitable for clinical use, we developed a strategy capable to generate polyclonal γδ-T cells with predominant memory-Vδ1 phenotype in good manufacturing practice (GMP) procedures with the additional possibility of gene-modification to improve their anti-tumour activity. Irradiated, engineered artificial antigen-presenting cells (aAPCs) expressing CD86/41BBL/CD40L and the cytomegalovirus (CMV)-antigen-pp65 were used. The presence of CMV-pp65 and CD40L proved to be crucial for expansion of the memory-Vδ1 subpopulation. To allow clinical translation and guarantee patient safety, aAPCs were stably transduced with an inducible suicide gene. Expanded γδ-T cells showed high expression of activation and memory markers, without signs of exhaustion; they maintained polyclonality and potent anti-tumour activity both (against immortalised and primary blasts) and in studies without displaying alloreactivity signals. The molecular characterisation (phophoproteomic and gene-expression) of these cell products underlines their unique properties. These cells can further be armed with chimeric antigen receptors (CAR) to improve anti-tumour capacity and persistence. We demonstrate the feasibility of establishing an allogeneic third-party, off-the-shelf and ready-to-use, γδ-T-cell bank. These γδ-T cells may represent an attractive therapeutic option endowed with broad clinical applications, including treatment of viral infections in highly immunocompromised patients, treatment of aggressive malignancies refractory to conventional approaches, bridging therapy to more targeted immunotherapeutic approaches and, ultimately, an innovative platform for the development of off-the-shelf CAR-T-cell products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883509PMC
http://dx.doi.org/10.3389/fimmu.2019.02717DOI Listing

Publication Analysis

Top Keywords

γδ-t cells
12
universal ready-to-use
8
ready-to-use immunotherapeutic
8
improve anti-tumour
8
anti-tumour activity
8
cells
7
immunotherapeutic approach
4
treatment
4
approach treatment
4
treatment cancer
4

Similar Publications

Role of P2X7 receptor in the progression and clinicopathological characteristics of gastric cancer.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.

P2X7 receptor (P2X7R) plays a role in regulating tumor progression, but it is unclear whether P2X7R affects the pathological characteristics of patients with gastric cancer and the activity of gastric cancer cells. Therefore, this study preliminarily investigated the relationship between P2X7R and clinicopathological features of patients with gastric cancer, and further explored the effect of P2X7R on the proliferation, migration and invasion of gastric cancer cells through functional experiments. The results showed that P2X7R was highly expressed in gastric cancer tissues and gastric cancer cells.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!