Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The paper is concerned with the interfacial acoustic waves localized at the internal boundary of two different perfectly bonded semi-infinite one-dimensional phononic crystals represented by periodically layered or functionally graded elastic structures. The unit cell is assumed symmetric relative to its midplane, whereas the constituent materials may be of arbitrary anisotropy. The issue of the maximum possible number of interfacial waves per full stop band of a phononic bicrystal is investigated. It is proved that, given a fixed tangential wavenumber, the lowest stop band admits at most one interfacial wave, while an upper stop band admits up to three interfacial waves. The results obtained for the case of generally anisotropic bicrystals are specialized for the case of a symmetric sagittal plane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894531 | PMC |
http://dx.doi.org/10.1098/rspa.2019.0371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!