Background: Salmonella typhimurium is a rod-shaped bacteria with a Gram-negative genus, belonging to the Enterobacteriaceae family of microbes, which invades the intestinal lumen of Human. Salmonella typhimurium is a root source, accounting for gastroenteritis in humans as well as in other mammals. Gastroenteritisis associated with Salmonella Typhimurium interacts with the contaminated food and water and spreads to nearby people in the area. Small intestine is attacked by Salmonella, which then enter into the bloodstream momentarily, and are responsible for millions of mortalities and morbidities around the globe. Salmonella typhimurium toxins cause gastrointestiritis due to inflammation in the stomach and intestine in infants and young children. It accounts for millions of deaths with a higher incidence rate in developing countries.

Methods: In the current research, subtractive proteome mining has been done to recognize putative drug targets. The proteome was analyzed through blast in order to exclude homologous proteins. Bacterial essential proteins were predicted and the participation of the essential genes in the metabolic pathways has been analyzed.

Results: 36 essential genes and 15 unique pathways have been identified as potential drug targets among the total of 1934 proteins. The location of proteins is determined as an outer membrane. 3 proteins out of 36 essential proteins are recognized as putative drug targets.

Conclusion: In the future, virtual screening for the evaluation of novel clinical compounds for the identified proteins will be effective and valuable for Salmonella Typhimurium infection in Homo sapiens.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871526519666191211142758DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
24
putative drug
12
drug targets
12
subtractive proteome
8
proteome mining
8
essential proteins
8
essential genes
8
salmonella
7
proteins
7
typhimurium
6

Similar Publications

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope.

View Article and Find Full Text PDF

Bee venom (BV) represents a promising natural alternative to conventional antibiotics, particularly significant given its broad-spectrum antimicrobial activity and potential to address the growing challenge of antimicrobial resistance. The prevalence of antimicrobial-resistant microorganisms (AMR) is a global burden that affects human health and the economies of different countries. As a result, several scientific communities around the world are searching for safe alternatives to antibiotics.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!