Accurate electronic health records are important for clinical care, research, and patient safety assurance. Correction of misspelled words is required to ensure the correct interpretation of medical records. In the Persian language, the lack of automated misspelling detection and correction system is evident in the medicine and health care. In this article, we describe the development of an automated misspelling detection and correction system for radiology and ultrasound's free texts in the Persian language. To achieve our goal, we used n-gram language model and three different types of free texts related to abdominal and pelvic ultrasound, head and neck ultrasound, and breast ultrasound reports. Our system achieved the detection performance of up to 90.29% for radiology and ultrasound's free texts with the correction accuracy of 88.56%. Results indicated that high-quality spelling correction is possible in clinical reports. The system also achieved significant savings during the documentation process and final approval of the reports in the imaging department.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256143PMC
http://dx.doi.org/10.1007/s10278-019-00296-yDOI Listing

Publication Analysis

Top Keywords

automated misspelling
12
misspelling detection
12
detection correction
12
free texts
12
persian language
8
correction system
8
radiology ultrasound's
8
ultrasound's free
8
reports system
8
system achieved
8

Similar Publications

Author affiliations are essential in bibliometric studies, requiring relevant information extraction from free-text affiliations. Precisely determining an author's location from their affiliation is crucial for understanding research networks, collaborations, and geographic distribution. Existing geoparsing tools using regular expressions have limitations due to unstructured and ambiguous affiliations, resulting in erroneous location identification, especially for unconventional variations or misspellings.

View Article and Find Full Text PDF

Introduction: Spelling is an essential foundation for reading and writing. However, many children leave school with spelling difficulties. By understanding the processes children use when they spell, we can intervene with appropriate instruction tailored to their needs.

View Article and Find Full Text PDF

Drug abuse is a serious problem in the United States, with over 90,000 drug overdose deaths nationally in 2020. A key step in combating drug abuse is detecting, monitoring, and characterizing its trends over time and location, also known as pharmacovigilance. While federal reporting systems accomplish this to a degree, they often have high latency and incomplete coverage.

View Article and Find Full Text PDF

The availability of data is the driving force behind most of the state-of-the-art techniques for machine translation tasks. Understandably, this availability of data motivates researchers to propose new techniques and claim about the superiority of their techniques over the existing ones by using suitable evaluation measures. However, the performance of underlying learning algorithms can be greatly influenced by the correctness and the consistency of the corpus.

View Article and Find Full Text PDF

Introduction: Coding medicinal products described on adverse event (AE) reports to specific entries in standardised drug dictionaries, such as WHODrug Global, is a time-consuming step in case processing activities despite its potential for automation. Many organisations are already partially automating drug coding using text-processing methods and synonym lists, however addressing challenges such as misspellings, abbreviations or ambiguous trade names requires more advanced methods. WHODrug Koda is a drug coding engine using text-processing algorithms, built-in coding rules and machine learning to code drug verbatims to WHODrug Global.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!