A high level of the secondary metabolite chicoric acid is produced by intracellular Pi supply and extracellular phosphate limiting in Echinacea purpurea hairy roots. Chicoric acid (CA) is a secondary metabolite which is gained from Echinacea purpurea. It has been found to be one of the most potent HIV integrase inhibitors with antioxidant and anti-inflammatory activities. However, the low-biosynthesis level of this valuable compound becomes an inevitable obstacle limiting further commercialization. Environmental stresses, such as phosphorus (Pi) deficiency, stimulate the synthesis of chemical metabolites, but significantly reduce plant growth and biomass production. To overcome the paradox of dual opposite effect of Pi limitation, we examined the hypothesis that the intracellular Pi supply and phosphate-limiting conditions enhance the total CA production in E. purpurea hairy roots. For this purpose, the coding sequence (CDS) of a purple acid phosphatase gene from Arabidopsis thaliana, AtPAP26, under CaMV-35S promoter was overexpressed in E. purpurea using Agrobacterium rhizogenes strain R15834. The transgenic hairy roots were cultured in a Pi-sufficient condition to increase the cellular phosphate metabolism. A short-term Pi starvation treatment of extracellular phosphate was applied to stimulate genes involved in CA biosynthesis pathway. The overexpression of AtPAP26 gene significantly increased the total APase activity in transgenic hairy roots compared to the non-transgenic roots under Pi-sufficient condition. Also, the transgenic hairy roots showed increase in the level of total and free phosphate, and in root fresh and dry weights compared to the controls. In addition, the phosphate limitation led to significant increase in the expression level of the CA biosynthesis genes. Considering the increase of biomass production in transgenic vs. non-transgenic hairy roots, a 16-fold increase was obtained in the final yield of CA for transgenic E. purpurea roots grown under -P condition compared to +P non-transgenic roots. Our results suggested that the expression of phosphatase genes and phosphate limitation were significantly effective in enhancing the final production yield and large-scale production of desired secondary metabolites in medicinal plant hairy roots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-019-03317-w | DOI Listing |
Hortic Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China.
Glycerophosphodiester phosphodiesterase 1 (GDPD1) plays an important function in the abiotic stress responses and participates in the accumulation of sn-glycerol-3-phosphate (G3P) in plants, which is key to plant systemic acquired resistance (SAR). However, the role of GDPD1 in plant responses to biotic stress remains poorly understood. This study characterized the antivirus function of the gene (designated as ) from Eureka lemon.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
Phenolic compounds, such as stilbenes and flavonoids, from spp. exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and cytotoxicity properties. To this end, the objectives of this study were to establish hairy root cultures of and assess its capacity to produce these bioactive compounds.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.
Hairy roots mediated by Agrobacterium rhizogenes can be obtained from the composite plants (plants with hairy roots and untransformed aerial parts) by ex vitro method. Composite plants can produce higher amounts of secondary metabolites by merging hydroponic systems. This provides a stable condition for composite plants, in which various metabolites are produced in different parts.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!