Discovery of multidrug resistance (MDR) in environmental microorganisms provides unique resources for uncovering antibiotic resistomes, which could be vital to predict future emergence of MDR pathogens. Our previous studies indicated that Lysobacter sp. conferred intrinsic resistance to multiple antibiotics at high levels, especially ampicillin, the first broad-spectrum β-lactam antibiotics against both Gram-positive and Gram-negative bacteria. However, the underlying molecular mechanisms for resistance to ampicillin in Lysobacter enzymogenes strain C3 (LeC3) remain unknown. In this study, screening a Tn5 transposon mutant library of LeC3 recovered 12 mutants with decreased ampicillin resistance, and three mutants (i.e., tatC, lebla, and lpp) were selected for further characterization. Our results revealed that genes encoding β-lactamase (lebla) and twin-arginine translocation (tatC) system for β-lactamase transport played a pivotal role in conferring ampicillin resistance in L. enzymogenes. It was also demonstrated that the lpp gene was not only involved in resistance against β-lactams but also conferred resistance to multiple antibiotics in L. enzymogenes. Permeability assay results indicated that decreased MDR in the lpp mutant was in part due to its higher cellular permeability. Furthermore, our results showed that the difference of LeC3 and L. antibioticus strain LaATCC29479 in ampicillin susceptibility was partly due to their differences in cellular permeability, but not due to β-lactamase activities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-10266-7DOI Listing

Publication Analysis

Top Keywords

permeability β-lactamase
8
resistance
8
resistance ampicillin
8
ampicillin lysobacter
8
lysobacter enzymogenes
8
resistance multiple
8
multiple antibiotics
8
ampicillin resistance
8
cellular permeability
8
ampicillin
6

Similar Publications

To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

In the present investigation, the formulation and thorough assessment of biodegradable composite films were conducted, utilizing pectin extracted from banana peel in conjunction with synthesized silver zeolite nanoparticles. The evaluation of physical properties, microstructural investigation, mechanical characteristics, and barrier properties was done providing valuable insights into various attributes of the film. The amalgamation of silver zeolite nanoparticles with the extracted pectin from banana peel results in biodegradable composite films exhibiting distinct physical, mechanical, barrier, and thermal properties.

View Article and Find Full Text PDF

Environmental concerns stemming from the widespread use of polyethylene packaging and the perishability of fresh products have promoted the development of antimicrobial biodegradable packaging films in preservation of vegetables. In this study, antimicrobial films based on chitosan (CS)-nisin (Ni)-nanocrystalline cellulose (NCC) were characterized, and its preservation effect applied to baby cabbage was investigated. The results suggest that 1 % CS-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!