Background: Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer's disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1β in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2 myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1β-induced plaque clearance. To date, however, the mechanisms of IL-1β-induced plaque clearance remain poorly understood.

Methods: To determine whether microglia are involved in IL-1β-induced plaque clearance, APP/PS1 mice induced to express mature human IL-1β in the hippocampus via adenoviral transduction were treated with the Aβ fluorescent probe methoxy-X04 (MX04) and microglial internalization of fibrillar Aβ (fAβ) was analyzed by flow cytometry and immunohistochemistry. To assess microglial proliferation, APP/PS1 mice transduced with IL-1β or control were injected intraperitoneally with BrdU and hippocampal tissue was analyzed by flow cytometry. RNAseq analysis was conducted on microglia FACS sorted from the hippocampus of control or IL-1β-treated APP/PS1 mice. These microglia were also sorted based on MX04 labeling (MX04 and MX04 microglia).

Results: Resident microglia (CD45CD11b) constituted > 70% of the MX04 cells in both Phe- and IL-1β-treated conditions, and < 15% of MX04 cells were recruited myeloid cells (CD45CD11b). However, IL-1β treatment did not augment the percentage of MX04 microglia nor the quantity of fAβ internalized by individual microglia. Instead, IL-1β increased the total number of MX04 microglia in the hippocampus due to IL-1β-induced proliferation. In addition, transcriptomic analyses revealed that IL-1β treatment was associated with large-scale changes in the expression of genes related to immune responses, proliferation, and cytokine signaling.

Conclusions: These studies show that IL-1β overexpression early in amyloid pathogenesis induces a change in the microglial gene expression profile and an expansion of microglial cells that facilitates Aβ plaque clearance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902486PMC
http://dx.doi.org/10.1186/s12974-019-1645-7DOI Listing

Publication Analysis

Top Keywords

plaque clearance
24
app/ps1 mice
16
amyloid plaque
12
il-1β-induced plaque
12
microglia
9
il-1β hippocampus
8
myeloid cells
8
resident microglia
8
mx04
8
analyzed flow
8

Similar Publications

Unlabelled: Despite some skepticism regarding the amyloid hypothesis, there is growing evidence that clearing amyloid by targeting specific species of amyloid (plaque, oligomers, fibrils, and protofibrils) for removal has therapeutic benefits. Specifically, there is growing evidence that, in mild cognitive impairment and mild dementia due to Alzheimer's disease (AD), robust and aggressive removal of amyloid can slow cognitive decline as measured by global instruments, composite measures, and cognitive testing. Furthermore, clinical efficacy signals coupled with clear biomarker changes provide the first evidence of disease modification.

View Article and Find Full Text PDF

Polymer-based antimicrobial strategies for periodontitis.

Front Pharmacol

January 2025

The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.

Periodontitis is a chronic inflammatory condition driven by plaque-associated microorganisms, where uncontrolled bacterial invasion and proliferation impair host immune responses, leading to localized periodontal tissue inflammation and bone destruction. Conventional periodontal therapies face challenges, including incomplete microbial clearance and the rise of antibiotic resistance, limiting their precision and effectiveness in managing periodontitis. Recently, nanotherapies based on polymeric materials have introduced advanced approaches to periodontal antimicrobial therapy through diverse antimicrobial mechanisms.

View Article and Find Full Text PDF

Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice.

View Article and Find Full Text PDF

Noninvasive imaging of β-amyloid is pivotal for the early diagnosis of Alzheimer's disease (AD). While single imaging methods have been extensively studied for detecting Aβ over the past decade, dual-modal probes have received scant attention. In this study, we synthesized and assessed a series of half-curcumin probes, among which demonstrated a high affinity and selectivity for Aβ aggregates.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!