A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution. | LitMetric

On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution.

J Chem Phys

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

Published: December 2019

We use a numerical implementation of polymer classical density functional theory with an incompressibility condition to study the system consisting of nonadsorbing polyelectrolytes confined by two planar surfaces and quantify the effective interaction between the two planar surfaces as a function of the polyelectrolyte and salt concentrations. Our results indicate that for the uncharged surfaces (and weakly charged surfaces), the effective interaction primarily consists of a short-range attraction due to the depletion followed by repulsion due to the electric double layer overlapping and electrostatic correlations. For salt-free and low salt concentration systems, the magnitude of the repulsion barrier is determined by the overlap between the electric double layers, while at relatively high salt concentrations, the magnitude of the repulsion barrier is determined by the electrostatic correlations. Due to the competition between the electric double layer and the electrostatic correlations, the magnitude of the repulsion barrier varies nonmonotonically. In contrast, a mean-field Poisson-Boltzmann treatment of the electrostatics predicts a monotonically decreasing repulsion barrier with increasing salt concentration. At moderate salt concentrations, our theory predicts oscillatory interaction profiles. A comparison with the mean-field Poisson-Boltzmann treatment of electrostatics suggests that the oscillations are due primarily to electrostatic correlations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5123172DOI Listing

Publication Analysis

Top Keywords

electrostatic correlations
16
repulsion barrier
16
salt concentrations
12
electric double
12
magnitude repulsion
12
planar surfaces
8
effective interaction
8
double layer
8
salt concentration
8
barrier determined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!