Naringin has been documented to possess multiple pharmacological activities. Reported pharmacokinetic studies revealed that oral bioavailability of naringin was low, in contrast to its significant pharmacological effects. The in vivo distribution of naringin and derived metabolites might partly explain this discrepancy. In this study, an ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry system (UFLC-Q-TOF-MS/MS) was used for profiling the distribution of naringin and its metabolites in rat plasma and fourteen tissues after oral administration. Naringin was widely distributed and its concentrations in certain tissues were much higher than that in plasma, especially in trachea and lung. Moreover, a total of 23 flavonoid metabolites and 15 phenolic catabolites were screened. Naringenin glucuronides were principal metabolites in plasma, while free naringenin and naringenin-7-O-sulfate were the major molecular forms in most tissues. Meanwhile, phenolic catabolites derived from naringin were found to be abundant in liver and kidney. These pharmacokinetic results would be useful to explain the pharmacodynamics of naringin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2019.121846 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
February 2025
School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China. Electronic address:
Zhizhu pills (ZZP) is a Traditional Chinese Medicine that has been extensively applied in the treatment of spleen deficiency and constipation for many years. As a commonly used prescription in Traditional Chinese medicine, there had been a controversy over whether to use raw Rhizoma Atractylodis Macrocephalae (RRAM) or Bran-Fired Rhizoma Atractylodis Macrocephalae (BRAM) in ZZP. In this study, a specific, sensitive, fast and accurate liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to analyze the main active components in ZZP.
View Article and Find Full Text PDFFront Plant Sci
October 2024
College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China.
Introduction: is a folk and rare medicinal plant, and specifically, it is distributed in the south, China. To investigate the cumulative properties of its medicinal components, we examined the effect of UV light on flavonoid content and related enzyme activity changes in .
Methods: The leaves and tubers were treated with UV-A, UV-B and UV-C for 1 h, 1L/23D h, 3 h and 3L/21D h (D represents darkness treatment).
Phytomedicine
July 2024
International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China. Electronic address:
Background: How to screen and identify the effective components in the complex substance system is one of the core issues in achieving the modernization of traditional Chinese medicine (TCM) formulas. However, it is still challenging to systematically screen out the effective components from the hundreds or thousands of components in a TCM formula.
Purpose: An innovative five-layer-funnel filtering mode stepwise integrating chemical profile, quantitative analysis, xenobiotic profile, network pharmacology and bioactivity evaluation was successfully presented to discover the effective components and implemented on a case study of Zhishi-Xiebai-Guizhi decoction (ZXG), a well-known TCM formula for coronary heart disease (CHD).
Food Chem
August 2024
Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China. Electronic address:
This study discusses interaction differences between three phenols (protocatechuic acid, naringin and tannic acid) and starch helix, investigates influences of phenols at different doses on properties of maize starch, and further determines their effects on quality and function of maize-starchy foods. Simulated results indicate variations of phenolic structure (phenolic hydroxyl group amount, glycoside structure and steric hindrance) and dose induce phenols form different complexes with starch helix. Formation of different starch-phenols complexes alters gelatinization (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!