Regioselective β-Arylation of α-Angelica Lactone through Isomerization/Addition under Mild Conditions.

ChemSusChem

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P.R. China.

Published: February 2020

The conversion of biomass-based platform molecules into various high-value chemicals greatly promotes the utilization of renewable biomass resources. Herein, an example of Rh-catalyzed β-arylation of levulinic-acid-derived α-angelica lactone was reported, providing the γ-lactone-structure products with high regioselectivity. Both arylboronic and alkenylboronic acids could be applied in this transformation. This reaction tolerated a variety of synthetically important functional groups. Moreover, the obtained γ-lactone products could be readily converted to high-value products such as 1,4-diols and γ-methoxy-carboxylates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201902761DOI Listing

Publication Analysis

Top Keywords

α-angelica lactone
8
regioselective β-arylation
4
β-arylation α-angelica
4
lactone isomerization/addition
4
isomerization/addition mild
4
mild conditions
4
conditions conversion
4
conversion biomass-based
4
biomass-based platform
4
platform molecules
4

Similar Publications

The recently developed phenoplast-related polymer, poly(benzofuran--arylacetic acid), presents a versatile molecular structure containing lactone and carboxylic acid functionalities that offer significant flexibility in creating cured materials with tailored properties for diverse applications, wherein also the thermal conductivity is an important factor. This study analyses the possibility of forming amide moieties of poly(benzofuran--arylacetic acid) with diamines resulting in cross-linked products in order to control its thermal properties. The cross-linking process is achieved by utilizing three distinct diamines, 1,6-diaminohexane, -xylylenediamine, and 4,7,10-trioxa-1,13-tridecanediamine, each possessing different degrees of polarity, flexibility, and reactivity.

View Article and Find Full Text PDF

Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6,9) roseoside), and three phenolic glucosides (apigenin 7--glucoside, eugenyl-4---glucopyranoside, and 5-methoxyeugenyl-4---glucopyranoside). Four of the isolated sesquiterpene lactones (8--angeloyloxyleucodin, matricarin, 15-deoxylactucin, and deacetylmatricarin 8--glucopyranoside) have not previously been found either in spp.

View Article and Find Full Text PDF

In order to characterize the volatile chemical components of processed by different Traditional Chinese Medicine Processing methods and establish fingerprint profiles, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) technology was employed to detect, identify, and analyze processed by five different methods. Fingerprint profiles of volatile chemical components of processed by different methods were established; a total of 85 different volatile organic compounds (VOCs) were detected in the experiment, including esters, alcohols, ketones, aldehydes, terpenes, olefinic compounds, nitrogen compounds, lactones, pyrazines, sulfur compounds, thiophenes, acid, and thiazoles. Principal component analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Pearson correlation analysis methods were used to cluster and analyze the detected chemical substances and their contents.

View Article and Find Full Text PDF

Paclitaxel is a widely used chemotherapeutic agent for the treatment of breast cancer (BC), including as a front-line treatment for triple-negative breast cancer (TNBC) patients. However, resistance to paclitaxel remains one of the major causes of death associated with treatment failure. Multiple studies have demonstrated that miRNAs play a role in paclitaxel resistance and are associated with both disease progression and metastasis.

View Article and Find Full Text PDF

Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas.

Int J Mol Sci

December 2024

Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.

Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!