Background Fluorine 18 (F)-fluorodeoxyglucose (FDG) PET/CT is a routine tool for staging patients with lymphoma and lung cancer. Purpose To evaluate configurations of deep convolutional neural networks (CNNs) to localize and classify uptake patterns of whole-body F-FDG PET/CT images in patients with lung cancer and lymphoma. Materials and Methods This was a retrospective analysis of consecutive patients with lung cancer or lymphoma referred to a single center from August 2011 to August 2013. Two nuclear medicine experts manually delineated foci with increased F-FDG uptake, specified the anatomic location, and classified these findings as suspicious for tumor or metastasis or nonsuspicious. By using these expert readings as the reference standard, a CNN was developed to detect foci positive for F-FDG uptake, predict the anatomic location, and determine the expert classification. Examinations were divided into independent training (60%), validation (20%), and test (20%) subsets. Results This study included 629 patients (mean age, 52.2 years ± 20.4 [standard deviation]; 394 men). There were 302 patients with lung cancer and 327 patients with lymphoma. For the test set (123 patients; 10 782 foci), the CNN areas under the receiver operating characteristic curve (AUCs) for determining hypermetabolic F-FDG PET/CT foci that were suspicious for cancer versus nonsuspicious by using the five input features were as follows: CT alone, 0.78 (95% confidence interval [CI]: 0.72, 0.83); F-FDG PET alone, 0.97 (95% CI: 0.97, 0.98); F-FDG PET/CT, 0.98 (95% CI: 0.97, 0.99); F-FDG PET/CT maximum intensity projection (MIP), 0.98 (95% CI: 0.98, 0.99); and F-FDG PET/CT MIP atlas, 0.99 (95% CI: 0.98, 1.00). The combination of F-FDG PET and CT information improved overall classification accuracy (AUC, 0.975 vs 0.981, respectively; < .001). Anatomic localization accuracy of the CNN was 2543 of 2639 (96.4%; 95% CI: 95.5%, 97.1%) for body part, 2292 of 2639 (86.9%; 95% CI: 85.3%, 88.5%) for region (ie, organ), and 2149 of 2639 (81.4%; 95% CI: 79.3%-83.5%) for subregion. Conclusion The fully automated anatomic localization and classification of fluorine 18-fluorodeoxyglucose PET uptake patterns in foci suspicious and nonsuspicious for cancer in patients with lung cancer and lymphoma by using a convolutional neural network is feasible and achieves high diagnostic performance when both CT and PET images are used. © RSNA, 2019 See also the editorial by Froelich and Salavati in this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2019191114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!