Apelin is a peptide that plays a role in physiological processes such as angiogenesis, apoptosis, and proliferation. The aim of this study was to investigate the role of capsaicin-sensitive afferent neurons and vagus in the effect of apelin against ischemia/reperfusion (I/R) injury. The experimental groups were (1) control, (2) I/R, (3) apelin + I/R, (4) vagotomy + I/R, (5) vagotomy + apelin + I/R, (6) capsaicin + I/R, (7) capsaicin + apelin + I/R, (8) lorglumide + I/R, and (9) lorglumide + apelin + I/R. To test the potential gastroprotective effect of apelin-13, apelin-13 (2 mg/kg i.v.) was administered just before both ischemia and reperfusion. A vagotomy was performed 1 week before I/R in the vagotomized groups; capsaicin (125 mg/kg s.c.) was administrated 2 weeks before I/R in the capsaicin-treated groups and lorglumide (5 mg/kg i.p.) was administered 30 min before I/R in the lorglumide-treated groups. After I/R, a variety parameters in gastric tissue were analyzed. cfos expression was determined in brainstem samples. In the I/R group, the lesion index, myeloperoxidase activity, lipid peroxidation, nitric oxide, and tumor necrosis factor-α increased, and mucosal blood flow, prostaglandin-E, and calcitonin gene related peptide decreased. Apelin prevented the damaging effects of I/R and increased cfos expression in brainstem areas. Vagotomy, capsaicin, and lorglumide largely eliminated the gastroprotective effects of apelin-13. This study showed that sensory nerves and the vagus play regulatory roles in apelin-induced gastroprotection. Cholecystokinin may play a role in the effect of apelin through sensory neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2019-0502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!