Fiber-Based Composite Meshes with Controlled Mechanical and Wetting Properties for Water Harvesting.

ACS Appl Mater Interfaces

Faculty of Metals Engineering and Industrial Computer Science, International Centre of Electron Microscopy for Materials Science , AGH University of Science and Technology, 30-059 Krakow , Poland.

Published: January 2020

Water is the basis of life in the world. Unfortunately, resources are shrinking at an alarming rate. The lack of access to water is still the biggest problem in the modern world. The key to solving it is to find new unconventional ways to obtain water from alternative sources. Fog collectors are becoming an increasingly important way of water harvesting as there are places in the world where fog is the only source of water. Our aim is to apply electrospun fiber technology, due to its high surface area, to increase fog collection efficiency. Therefore, composites consisting of hydrophobic and hydrophilic fibers were successfully fabricated using a two-nozzle electrospinning setup. This design enables the realization of optimal meshes for harvesting water from fog. In our studies we focused on combining hydrophobic polystyrene (PS) and hydrophilic polyamide 6 (PA6), surface properties in the produced meshes, without any chemical modifications, on the basis of new hierarchical composites for collecting water. This combination of hydrophobic and hydrophilic materials causes water to condense on the hydrophobic microfibers and to run down on the hydrophilic nanofibers. By adjusting the fraction of PA6 nanofibers, we were able to tune the mechanical properties of PS meshes and importantly increase the efficiency in collecting water. We combined a few characterization methods together with novel image processing protocols for the analysis of fiber fractions in the constructed meshes. The obtained results show a new single-step method to produce meshes with enhanced mechanical properties and water collecting abilities that can be applied in existing fog water collectors. This is a new promising design for fog collectors with nano- and macrofibers which are able to efficiently harvest water, showing great application in comparison to commercially available standard meshes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b19839DOI Listing

Publication Analysis

Top Keywords

water
13
properties water
8
water harvesting
8
harvesting water
8
fog collectors
8
hydrophobic hydrophilic
8
collecting water
8
mechanical properties
8
meshes
7
fog
6

Similar Publications

With the continuous development of Terahertz technology and its high sensitivity to water, Terahertz technology has been widely applied in various research areas within the field of biomedicine, such as research onskin wounds and burns, demonstrating numerous advantages and potential. The aim of this study is to summarize and conclude the current research status of Terahertz radiation in skin wounds, burns, and melanoma. Additionally, it seeks toreveal the development status of Terahertz in skin wound models and analyze the short comings of Terahertz in detecting such models at the present stage.

View Article and Find Full Text PDF

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

Three months before the planned implementation of the European Union Regulation on Deforestation-free products, the European Commission proposed to postpone the implementation by twelve months. The announcement raised the temperature in the debate on this regulation. We put forward suggestions, based on scientific knowledge as well as current EUDR research and implementation projects, on how the 12-month phasing-in period could be used wisely to promote sustainability transitions in deforestation-risk value chains.

View Article and Find Full Text PDF

Factors Relating to Sprint Swimming Performance: A Systematic Review.

Sports Med

January 2025

Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.

Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!