Background: Antibacterial resistance is a serious public health problem infecting millions in the global population. Currently, there are few antimicrobials on the market against resistant bacterial infections. Therefore, there is an urgent need for new therapeutic options against these strains.
Objective: In this study, we synthesized and evaluated ten Bis(2-hydroxynaphthalene-1,4-dione) against Gram-positive strains, including a hospital Methicillin-resistant (MRSA), and Gram-negative strains.
Methods: The compounds were prepared by condensation of aldehydes and lawsone in the presence of different L-aminoacids as catalysts in very good yields. The compounds were submitted to antibacterial analysis through disk diffusion and Minimal Inhibitory Concentration (MIC) assays.
Results: L-aminoacids have been shown to be efficient catalysts in the preparation of Bis(2- hydroxynaphthalene-1,4-dione) from 2-hydroxy-1,4-naphthoquinones and arylaldehydes in excellent yields of up to 96%. The evaluation of the antibacterial profile against Gram-positive strains (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228) also including a hospital Methicillin-resistant S. aureus (MRSA) and Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 4352), revealed that seven compounds showed antibacterial activity within the Clinical and Laboratory Standards Institute (CLSI) levels mainly against P. aeruginosa ATCC 27853 (MIC 8-128 µg/mL) and MRSA (MIC 32-128 µg/mL). In addition, the in vitro toxicity showed all derivatives with no hemolytic effects on healthy human erythrocytes. Furthermore, the derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) parameters, and a similar profile to antibiotics currently in use. Finally, the in silico evaluation pointed to a structure-activity relationship related to lipophilicity for these compounds. This feature may help them in acting against Gram-negative strains, which present a rich lipid cell wall selective for several antibiotics.
Conclusion: Our data showed the potential of this series for exploring new and more effective antibacterial activities in vivo against other resistant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026619666191210160342 | DOI Listing |
J Coll Physicians Surg Pak
January 2025
Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan.
Objective: To determine the clinical microbial synergy in skin and soft tissue infections (SSTIs) based on bacterial groups and explore the likelihood ratios of clinical parameters.
Study Design: Descriptive cross-sectional study. Place and Duration of the Study: The study was conducted at the Department of Microbiology, University of Karachi in collaboration with Jinnah Postgraduate Medical Centre, and Jinnah Sindh Medical University, Karachi, Pakistan, from June 2023 to May 2024.
Sci Rep
January 2025
Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt.
Bee venom (BV) represents a promising natural alternative to conventional antibiotics, particularly significant given its broad-spectrum antimicrobial activity and potential to address the growing challenge of antimicrobial resistance. The prevalence of antimicrobial-resistant microorganisms (AMR) is a global burden that affects human health and the economies of different countries. As a result, several scientific communities around the world are searching for safe alternatives to antibiotics.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
are opportunistic pathogens which can cause mastitis in dairy cattle. mastitis often has a poor cure rate and can lead to the development of chronic infection, which has an impact on both health and production. However, there are few studies which aim to fully characterize by whole-genome sequencing from bovine mastitis cases.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!