A biuret-derived, MS-cleavable cross-linking reagent for protein structural analysis: A proof-of-principle study.

J Mass Spectrom

Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany.

Published: January 2020

Chemical cross-linking combined with mass spectrometry (XL-MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross-linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross-linkers containing an MS-labile urea group, we now present the biuret-based, CID-MS/MS-cleavable cross-linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross-linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.4449DOI Listing

Publication Analysis

Top Keywords

biuret-derived ms-cleavable
4
ms-cleavable cross-linking
4
cross-linking reagent
4
protein
4
reagent protein
4
protein structural
4
structural analysis
4
analysis proof-of-principle
4
proof-of-principle study
4
study chemical
4

Similar Publications

A biuret-derived, MS-cleavable cross-linking reagent for protein structural analysis: A proof-of-principle study.

J Mass Spectrom

January 2020

Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany.

Chemical cross-linking combined with mass spectrometry (XL-MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross-linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross-linkers containing an MS-labile urea group, we now present the biuret-based, CID-MS/MS-cleavable cross-linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross-linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!