Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a laboratory scale experiment for the treatment of synthetic molasses wastewater using a combination of an anaerobic baffled reactor (ABR) and a two-stage down-flow hanging sponge (TSDHS) reactor (ABR-TSDHS system) was conducted. The TSDHS comprised a closed-type first-stage down-flow hanging sponge (first DHS) for desulfurization and an open-type second-stage DHS (second DHS) for post-treatment of effluent from the ABR and first DHS. Effluent from the second DHS was sprinkled on top of the first DHS, whereas biogas produced from the ABR was supplied to its bottom. A chemical oxygen demand (COD) removal efficiency of 88.3% was found for the ABR-TSDHS system during the final treatment phase. The ABR achieved a maximum organic loading rate (OLR) of 3.70 kg COD/(m day). Most of the organic matter was degraded in the first compartment of the ABR, with methane-producing archaea as its main consumer. The biogas generated by the ABR contained high concentrations of hydrogen sulfide (up to 4,500 ppm). In the TSDHS, the first DHS achieved 87.3% hydrogen sulfide removal via dissolution into sprinkled effluent water. Dissolved sulfide in the first DHS effluent was oxidized to sulfate in the second DHS in the absence of aeration. In addition, 85.0% of the ammonia and 57.7% of the total nitrogen were removed in the second DHS via biological reactions, including sulfur-based autotrophic denitrification. Therefore, the ABR-TSDHS system can be applied to not only molasses wastewater treatment but also the desulfurization of the produced biogas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-07077-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!