The present work designs a low-cost biological treatment strategy consisting of constructed wetlands (CWs) followed by entrapped algae (EA) for removing nutrients (PO, NO, and NH) and organic matters from high-strength wastewater. The CWs are efficient means for organic pollutant removal but face challenges in nutrient removal. Algae have a high growth rate and nutrient uptake capabilities from wastewater. The severe challenge that limits the use of algae for nutrient removal from wastewater is its post-treatment separation from wastewater. This work presents a strategy to address the described problems of CWs and algae-based system. It also assesses the performance of the system using synthetic wastewater. A combined system of CW followed by EA (CW-EA) was able to treat 86.0% of phosphate, 95.0% of nitrate, 74.0% of ammonium, and 87.0% of chemical oxygen demand (COD) from high-strength wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06896-zDOI Listing

Publication Analysis

Top Keywords

high-strength wastewater
12
organic matters
8
constructed wetlands
8
nutrient removal
8
wastewater
7
simultaneous removal
4
removal organic
4
matters nutrients
4
nutrients high-strength
4
wastewater constructed
4

Similar Publications

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.

View Article and Find Full Text PDF

Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.

View Article and Find Full Text PDF

Insight into enhanced enrichment and nitrogen removal performance of Anammox bacteria with novel biochar/tourmaline polyurethane sponge modified biocarrier.

Bioresour Technol

December 2024

School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Article Synopsis
  • - A novel biocarrier made from biochar and tourmaline polyurethane (BTP) enhanced the growth and nitrogen removal efficiency of Anammox bacteria, achieving an impressive 80% total inorganic nitrogen removal compared to 67% with an unmodified biocarrier.
  • - The BTP system increased the abundance of genes related to amino acid synthesis and boosted protein secretion in extracellular polymer substances, which are crucial for biofilm formation and function.
  • - Using BTP also improved key metabolic functions in AnAOB, such as heme concentration and specific anammox activity, while Candidatus Brocadia was identified as the dominant genus in the biofilm, which contributed to the enhanced nitrogen removal capabilities.
View Article and Find Full Text PDF

In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!