Oxygen deprivation (hypoxia) is a common challenge in water environment, which causes lack of energy and oxidative damage in organisms. Many studies have indicated a number of physiological and metabolic changes under hypoxia, but the effects of dietary nutrients on hypoxia tolerance have not been well evaluated. In the present 7-week feeding trial, we fed zebrafish with low-protein diet (LP), high-protein diet (HP), low-fat diet (LF), high-fat diet (HF), low-carbohydrate diet (LC), and high-carbohydrate diet (HC), respectively. Afterward, the resistance to acute hypoxia challenge, growth, body composition, activities of metabolic enzymes, and expressions of energy homeostasis-related genes and six hifαs genes were measured. The results indicated that only the HC diet could significantly improve the resistance to hypoxia challenge. Moreover, the HC diet feeding caused higher glycogen deposition in the liver and muscle, and these glycogens were significantly reduced after 6-h acute hypoxia challenge. Meanwhile, the lactate content in the liver and blood was increased in the HC groups. At hypoxia status, the relative mRNA expressions of the genes related to glycolysis, ATP production, insulin signaling pathway, and hif-3a (hif1al) were all significantly increased in the muscle of the HC diet-fed fish. This study revealed that high-carbohydrate diet could improve the resistance to hypoxia by activating glycolysis and hif/insulin signaling pathway in zebrafish, mainly in the muscle, to efficiently supply energy. Therefore, our results highlight the importance of dietary carbohydrate in resisting hypoxia in fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-019-00742-2 | DOI Listing |
Front Nutr
December 2024
Liver Institute, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
Background And Aims: Limited data link manufactured sweeteners impact on metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to evaluate the effects of manufactured sugars (L-glucose) compared to natural sugars (D-glucose) on phenotype, molecular and metabolic changes in mice models fed with either regular diet (RD) or high fat diet (HFD).
Methods: C57BL/6 mice fed 16-weeks with either RD; 70% carbohydrate or HFD; 60% fat, with or without additional glucose (Glu, at 18% w/v) to drinking tap water at weeks 8-16; of either natural (D-Glu) or manufactured (L-Glu) sugars.
Metabolites
December 2024
Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea.
: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. : The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation.
View Article and Find Full Text PDFOpen Access J Sports Med
December 2024
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (, high-fat diet, high carbohydrate diet ) have different effects on gut microbiota, which can also affect exercise performance.
View Article and Find Full Text PDFNutrients
December 2024
Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Osaka, Japan.
Background/objectives: Understanding food preferences is important for weight management. However, methods for assessing food preferences are not well established, especially in Japan. This study aimed to examine detailed food preferences and their associations with actual food intake in non-obese and abdominal-obese subjects using a newly developed questionnaire tailored for the Japanese population.
View Article and Find Full Text PDFNutrients
November 2024
Nutraceuticals Science Laboratory, Advanced Research Institutes, Bourbon Corporation, Kashiwazaki 945-8611, Niigata, Japan.
Objectives: This study primarily aimed to examine the optimal amount of carbohydrates in the effects of high-isomaltulose and high-sucrose ingestion compared with low-sucrose ingestion on blood glucose levels. The secondary objective was to assess the changes in blood glucose levels that may impact golf-related performance.
Methods: This study included 29 healthy male competitive golfers playing 18 holes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!