Macroporous hydrogels have been widely studied for biological and biomedical applications such as drug delivery and tissue engineering. However, these hydrogels cannot stably sequester molecules of interest due to their high permeability. The purpose of this work was to study the feasibility of using two aptamers to sequester two protein drugs, quantify the apparent diffusivity of protein drugs in aptamer-functionalized macroporous hydrogels, and evaluate the function of aptamer-functionalized macroporous hydrogels in controlling protein release for angiogenesis. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were used as model proteins. The data show that anti-VEGF and anti-bFGF aptamers could be uniformly incorporated into macroporous hydrogels for stable and specific sequestration of VEGF and bFGF. The aptamers could reduce the apparent diffusivity of VEGF and bFGF in the macroporous hydrogels by approximately three orders of magnitude. Moreover, as the aptamers could prolong the release of these growth factors, dual aptamer-functionalized macroporous hydrogels could stimulate synergistic angiogenesis. Therefore, this work has successfully demonstrated that aptamer-functionalized macroporous hydrogels hold great potential of stably sequestering multiple molecules of interest for various biological and biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900755PMC
http://dx.doi.org/10.1021/acsbiomaterials.9b00423DOI Listing

Publication Analysis

Top Keywords

macroporous hydrogels
32
growth factor
16
aptamer-functionalized macroporous
16
macroporous
8
hydrogels stable
8
vascular endothelial
8
endothelial growth
8
basic fibroblast
8
fibroblast growth
8
hydrogels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!