Objective: As an epidermal growth factor, receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib demonstrates a good therapeutic effect in patients with EGFR-mutant non-small-cell lung cancer (NSCLC). However, an overwhelming majority of these patients inevitably develop resistance against gefitinib. Unfortunately, the mechanism underlying this phenomenon is still not fully understood. Here we aim to reveal the mechanism of gefitinib resistance in NSCLC induced by FGFR1.
Materials And Methods: We used high-throughput sequencing to compare the mRNA expression profiles of PC9 and PC9-GR (gefitinib-resistant) cells. The clinical significance of fibroblast growth factor receptor 1 (FGFR1) in NSCLC was also investigated using immunohistochemistry and Kaplan-Meier survival analysis. Finally, the in vitro molecular mechanisms were analyzed using confocal laser microscopy, Western blotting, transwell assay, colony formation assay, CCK-8 assay, and apoptosis assay.
Results: We observed that FGFR1 was highly expressed in NSCLC tissues and was closely associated with poor prognosis. Cytological experiments showed that FGFR1 promoted the proliferation and migration of PC9-GR cells and mediated their resistance to gefitinib. Furthermore, studies aimed at unraveling this mechanism revealed that FGFR1 activated the AKT/mTOR signaling pathway. These findings show that the FGFR1/AKT/mTOR signaling pathway plays a vital role in acquired resistance against gefitinib in NSCLC.
Conclusion: This work provides new evidence that FGFR1 functions as a key regulator of gefitinib resistance, thereby demonstrating its potential as a novel biomarker and therapeutic target for NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874148 | PMC |
http://dx.doi.org/10.2147/OTT.S220462 | DOI Listing |
J Natl Compr Canc Netw
December 2024
1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.
View Article and Find Full Text PDFAnal Chem
December 2024
Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Patients with epidermal growth factor receptor mutant nonsmall cell lung cancer (NSCLC) often fail to treat gefitinib because of secondary drug resistance. The development of tumor drug resistance is closely related to variations in cancer cell metabolism. Single-cell metabolomics analysis can provide unique information about tumor drug resistance.
View Article and Find Full Text PDFCommun Biol
December 2024
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China. Electronic address:
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
HER2-positive (HER2+) breast cancer is characterized by the overexpression of the ERBB2 (HER2) gene, which promotes aggressive tumor growth and poor prognosis. Targeting the ERBB2 pathway with single-agent therapies has shown limited efficacy due to resistance mechanisms and the complexity of gene interactions within the tumor microenvironment. This study aims to explore potential drug synergies by analyzing gene-drug interactions and combination therapies that target the ERBB2 pathway in HER2+ breast tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!