AI Article Synopsis

  • Cancer is a complex disease influenced by multiple genes, with TOX3 gene SNPs linked to breast cancer risk.
  • The study identifies several damaging nonsynonymous SNPs (like A266D and P273S) and premature stop codon SNPs (like Q527STOP) that could lead to dysfunctional proteins.
  • Additionally, regulatory SNPs affecting TOX3 gene regulation were discovered, and 3D models of the TOX3 protein were created, highlighting the potential for these SNPs in personalized medicine approaches for breast cancer.

Article Abstract

Cancer is one of the deadliest complex diseases having multigene nature where the role of single-nucleotide polymorphism (SNP) has been well explored in multiple genes. TOX high mobility group box family member 3 () is one such gene, in which SNPs have been found to be associated with breast cancer. In this study, we have examined the potentially damaging nonsynonymous SNPs(nsSNPs) in gene using tools, namely PolyPhen2, SNP&GO, PhD-SNP and PROVEAN, which were further confirmed by I-Mutant, MutPred1.2 and ConSurf for their stability, functional and structural effects. nsSNPs rs368713418 (A266D), rs751141352 (P273S, P273T), rs200878352 (A275T) have been found to be the most deleterious that may have a vital role in breast cancer. Premature stop codon producing SNPs (Q527STOP), rs1259790811 (G495STOP), rs1294465822 (S395STOP) and rs1335372738 (G8STOP) were also found having prime importance in truncated and malfunctional protein formation. We also characterized regulatory SNPs for its potential effect on gene regulation and found nine SNPs that may affect the gene regulation. Further, we have also designed 3D models using I-TASSER for the wild type and four mutant TOX3 proteins. Our study concludes that these SNPs can be of prime importance while studying breast cancer and other associated diseases as well. They are required to be studied in model organisms and cell cultures, and may have potential importance in personalized medicines and gene therapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

breast cancer
12
regulatory snps
8
gene regulation
8
snps
7
gene
6
approach characterize
4
characterize nonsynonymous
4
nonsynonymous snps
4
snps regulatory
4
snps human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!