Neonates are at increased risk for bacterial sepsis. We established that the immune-suppressive cytokine interleukin-27 (IL-27) is elevated in neonatal mice. Similarly, human cord blood-derived macrophages express IL-27 genes and secrete more cytokine than macrophages from adults. In the present work, we hypothesized that increased levels of IL-27 predispose neonatal mice to more severe infection during Gram-negative sepsis. Serum IL-27 levels continued to rise during infection. Peripheral tissue analysis revealed systemic IL-27 expression, while myeloid cell profiling identified Gr-1- and F4/80-expressing cells as the most abundant producers of IL-27 during infection. Increased IL-27 levels were consistent with increased mortality that was improved in IL-27 receptor α (IL-27Rα) mice that lack a functional IL-27 receptor. Infected IL-27Rα pups also exhibited improved weight gain and reduced morbidity. This was consistent with reduced bacterial burdens and more efficient bacterial killing by Ly6B.2 myeloid cells and macrophages compared to WT neonates. Live animal imaging further supported a more severe and disseminated infection in WT neonates. This is the first report to describe the impact of elevated early-life IL-27 on the host response in a neonatal infection model while also defining the cell and tissue sources of cytokine. IL-27 is frequently associated with suppressed inflammation. In contrast, our findings demonstrate that IL-27 indirectly promotes an inflammatory cytokine response during neonatal sepsis by directly compromising control of bacteria that drive the inflammatory response. Collectively, our results suggest that IL-27 represents a therapeutic target to limit susceptibility and improve infectious outcomes in neonatal sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035946 | PMC |
http://dx.doi.org/10.1128/IAI.00828-19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!