is an obligate intracellular bacterial pathogen that replicates inside the lysosome-derived -containing vacuole (CCV). To establish this unique niche, requires the Dot/Icm type IV secretion system (T4SS) to translocate a cohort of effector proteins into the host cell, which modulate multiple cellular processes. To characterize the host-pathogen interactions that occur during infection, stable-isotope labeling by amino acids in cell culture (SILAC)-based proteomics was used to identify changes in the host proteome during infection of a human-derived macrophage cell line. These data revealed that the abundances of many proteins involved in host cell autophagy and lysosome biogenesis were increased in infected cells. Thus, the role of the host transcription factors TFEB and TFE3, which regulate the expression of a network of genes involved in autophagy and lysosomal biogenesis, were examined in the context of infection. During infection with , both TFEB and TFE3 were activated, as demonstrated by the transport of these proteins from the cytoplasm into the nucleus. The nuclear translocation of these transcription factors was shown to be dependent on the T4SS, as a Dot/Icm mutant showed reduced nuclear translocation of TFEB and TFE3. This was supported by the observation that blocking bacterial translation with chloramphenicol resulted in the movement of TFEB and TFE3 back into the cytoplasm. Silencing of the TFEB and TFE3 genes, alone or in combination, significantly reduced the size of the CCV, which indicates that these host transcription factors facilitate the expansion and maintenance of the organelle that supports intracellular replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035922PMC
http://dx.doi.org/10.1128/IAI.00534-19DOI Listing

Publication Analysis

Top Keywords

tfeb tfe3
24
transcription factors
16
host transcription
12
-containing vacuole
8
factors tfeb
8
host cell
8
nuclear translocation
8
host
6
tfeb
6
tfe3
6

Similar Publications

GPNMB expression differentiates subependymal giant cell astrocytoma from other mimickers.

Ann Diagn Pathol

January 2025

Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China. Electronic address:

Subependymal giant cell astrocytomas (SEGAs) are neoplasms that exhibit slow growth patterns and are closely associated with tuberous sclerosis complex (TSC). Recent research indicates that TFE3/TFEB-targeted biomarker glycoprotein nonmetastatic B (GPNMB) is upregulated inTSC1/2-related tumours. In this study, we performed molecular analysis on SEGAs and analyzed GPNMB expression in 6 SEGAs, 10 PXAs, 9 GBMs, 8 eGBMs, 8 diffuse astrocytomas, 8 oligodendrogliomas and 7 glioneuronal tumours through immunohistochemistry, 100 % (6/6) of the SEGA cases exhibited positive GPNMB expression, whereas it was negative in all other CNS tumours.

View Article and Find Full Text PDF

Within cells multiple related transcription factors targeting the same sequences may co-exist, leading to potential regulatory cooperativity, redundancy or competition. Yet the differential roles and biological functions of co-targeting transcription factors is poorly understood. In melanoma, three highly-related transcription factors are co-expressed: The mTORC1-regulated TFEB and TFE3, that are key effectors of a wide range of metabolic and microenvironmental cues; and MITF, that controls melanoma phenotypic identity.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC.

View Article and Find Full Text PDF

Management of translocation carcinomas of the kidney.

Transl Cancer Res

November 2024

Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.

Microphthalmia-associated transcription factor family translocation renal cell carcinoma (MiT-tRCC) stands out as a rare subtype of kidney cancer with distinct biological features compared to other kidney cancer subtypes. It encompasses TFE3-rearranged RCC (also known as Xp11 translocation RCC) and TFE-rearranged translocations RCC, although multiple new fusion partners were identified. Traditionally thought to primarily affect children and young adults, more cases of MiT-tRCC are being identified in adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!