Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis () with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997695 | PMC |
http://dx.doi.org/10.1104/pp.19.00732 | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Phytopathologie und Pflanzenschutz, Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Horticulture, Patuakhali Science and Technology University, Patuakhali, Bangladesh.
Purpose: The study focused on developing a rapid PCR-based detection method and employing gamma irradiation techniques to manage , aiming to produce brown rot-free export-quality potatoes. This initiative seeks to enhance potato exports from Bangladesh.
Materials And Methods: Samples of potato tubers and soil were collected from various commercially significant potato-growing areas, resulting in a total of 168 isolates from potato tubers and soil across 12 regions.
ACS Chem Biol
January 2025
Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
Protein interactions play a crucial role in regulating cellular mechanisms, highlighting the need for effective methods to control these processes. In this regard, chemical inducers of proximity (CIPs) offer a promising approach to precisely manipulate protein-protein interactions in live cells and . In this study, we introduce pMandi, a photocaged version of the plant hormone-based CIP mandipropamid (Mandi), which allows the use of light as an external trigger to induce protein proximity in live mammalian cells.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain.
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!