Currently available volumes of compounds and biological activity data enable large-scale analyses of compound promiscuity (multi-target activity). To aid in the exploration of structure-promiscuity relationships, promiscuity cliffs (PCs) were introduced previously. In analogy to activity cliffs, PCs were defined as pairs of structurally analogous compounds with large differences in the number of targets they are active against. Hence, PCs reveal small chemical modifications that are implicated in promiscuity. As introduced originally, PCs were identified by applying the matched molecular pair formalism and were thus confined to changes at a single substitution site. Herein, PCs with multiple substitution sites are introduced and a pilot study on a large collection of protein kinase inhibitors is reported, which provide excellent test cases for promiscuity analysis. For dual-site PCs (dsPCs), which dominated the distribution of multi-site PCs, an extended data structure was generated comprising a dsPC and two single-site analogs accounting for individual substitutions. Using a canonical representation, extended dsPCs are intuitive and easy to interpret from a chemical perspective. The analog quartet representing an extended dsPC is rich in structure-promiscuity relationship information and makes it possible to evaluate the potential interplay of chemical modifications implicated in promiscuity. Furthermore, extended dsPCs provide insights into possible experimental causes of apparent differences in analog promiscuity such as varying test frequencies. Hence, the newly introduced PC format should be of interest for exploring origins of compound promiscuity in medicinal chemistry and for formulating experimentally testable target hypotheses for analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2019.115238 | DOI Listing |
Bioorg Med Chem
July 2021
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany. Electronic address:
Given the increasing quest for selective kinase inhibitors, we have systematically investigated structural and structure-promiscuity relationships between promiscuous kinase inhibitors and other types with increasing potential for selective kinase inhibition. Therefore, inhibitors with different modes of action were extracted from X-ray structures of kinase complexes. For more than 18,000 promiscuous kinase inhibitors and 1253 type I/, II, and allosteric inhibitors with structurally confirmed mechanisms, analogue space was systematically charted.
View Article and Find Full Text PDFJ Comput Aided Mol Des
May 2022
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, 53115, Bonn, Germany.
Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topical issues in pharmaceutical research. We have investigated the ability of a generative neural network to create multi-target compounds. Data sets of experimentally confirmed multi-target, single-target, and consistently inactive compounds were extracted from public screening data considering positive and negative assay results.
View Article and Find Full Text PDFMol Pharm
December 2020
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.
Small molecules with multitarget activity are capable of triggering polypharmacological effects and are of high interest in drug discovery. Compared to single-target compounds, promiscuity also affects drug distribution and pharmacodynamics and alters ADMET characteristics. Features distinguishing between compounds with single- and multitarget activity are currently only little understood.
View Article and Find Full Text PDFMol Inform
January 2021
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115, Bonn, Germany.
Compounds with the ability to interact with multiple targets, also called promiscuous compounds, provide the basis for polypharmacological drug discovery. In recent years, a plethora of structural analogs with different promiscuity has been identified. Nevertheless, the molecular origins of promiscuity remain to be elucidated.
View Article and Find Full Text PDFBioorg Med Chem
January 2020
Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany. Electronic address:
Currently available volumes of compounds and biological activity data enable large-scale analyses of compound promiscuity (multi-target activity). To aid in the exploration of structure-promiscuity relationships, promiscuity cliffs (PCs) were introduced previously. In analogy to activity cliffs, PCs were defined as pairs of structurally analogous compounds with large differences in the number of targets they are active against.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!