Detailed maps of vegetation facilitate spatial conservation planning. Such information can be difficult to map from remotely sensed data with the detail (thematic resolution) required for ecological applications. For grass-dominated habitats in the South-East of the UK, it was evaluated which of the following choices improved classification accuracies at various thematic resolutions: 1) Hyperspectral data versus data with a reduced spectral resolution of eight and 13 bands, which were simulated from the hyperspectral data. 2) A vegetation classification system using a detailed description of vegetation (sub)-communities (the British National Vegetation Classification, NVC) versus clustering based on the dominant plant species (Dom-Species). 3) The month of imagery acquisition. Hyperspectral data produced the highest accuracies for vegetation away from edges using the NVC (84-87%). Simulated 13-band data performed also well (83-86% accuracy). Simulated 8-band data performed poorer at finer thematic resolutions (77-78% accuracy), but produced accuracies similar to those from simulated 13-band or hyperspectral data for coarser thematic resolutions (82-86%). Grouping vegetation by NVC (84-87% accuracy for hyperspectral data) usually achieved higher accuracies compared to Dom-Species (81-84% for hyperspectral data). Highest discrimination rates were achieved around the time vegetation was fully developed. The results suggest that using a detailed description of vegetation (sub)-communities instead of one based on the dominating species can result in more accurate mapping. The NVC may reflect differences in site conditions in addition to differences in the composition of dominant species, which may benefit vegetation classification. The results also suggest that using hyperspectral data or the 13-band multispectral data can help to achieve the fine thematic resolutions that are often required in ecological applications. Accurate vegetation maps with a high thematic resolution can benefit a range of applications, such as species and habitat conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014585PMC
http://dx.doi.org/10.1016/j.scitotenv.2019.134584DOI Listing

Publication Analysis

Top Keywords

hyperspectral data
28
vegetation classification
16
thematic resolutions
16
data
13
thematic resolution
12
vegetation
11
grass-dominated habitats
8
remotely sensed
8
sensed data
8
spectral resolution
8

Similar Publications

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperspectral imaging (HSI) combined with machine learning (ML) offers a promising method for evaluating the freshness of meat by measuring fluorescence, which is closely linked to bacterial density.
  • The study introduces a freshness index (FI) as a quantifiable metric for meat freshness, enabling the processing of hyperspectral data to estimate freshness even in unknown states.
  • This technology could revolutionize consumer electronics, enhancing devices like refrigerators and smartphones with advanced sensing capabilities for more personalized user experiences.
View Article and Find Full Text PDF

This study investigates the reconstruction of hyperspectral signatures from RGB data to enhance surgical imaging, utilizing the publicly available HeiPorSPECTRAL dataset from porcine surgery and an in-house neurosurgery dataset. Various architectures based on convolutional neural networks (CNNs) and transformer models are evaluated using comprehensive metrics. Transformer models exhibit superior performance in terms of RMSE, SAM, PSNR and SSIM by effectively integrating spatial information to predict accurate spectral profiles, encompassing both visible and extended spectral ranges.

View Article and Find Full Text PDF

Semantic surgical scene segmentation is crucial for accurately identifying and delineating different tissue types during surgery, enhancing outcomes and reducing complications. Hyperspectral imaging provides detailed information beyond visible color filters, offering an enhanced view of tissue characteristics. Combined with machine learning, it supports critical tumor resection decisions.

View Article and Find Full Text PDF

Discrimination of leaf diseases in Maize/Soybean intercropping system based on hyperspectral imaging.

Front Plant Sci

December 2024

College of Agronomy, College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong, China.

In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!