Glycosphingolipids (GSLs), such as the globo-series GSLs stage-specific embryonic antigen 3 (SSEA-3), SSEA-4, and Globo-H, are specifically expressed on pluripotent stem cells and cancer cells, and are known to be associated with various biological processes such as cell recognition, cell adhesion, and signal transduction. However, the behavior and biological roles of these GSLs are still unclear. In our previous study, we observed the interactions between the lipid raft and GSLs in real-time using single-molecule imaging, where we successfully synthesized various fluorescent analogs of GSLs (e.g., GM1 and GM3). Here, we have developed fluorescent analogs of SSEA-3, SSEA-4, and Globo-H using chemical synthesis. The biophysical properties of these analogs as raft markers were examined by partitioning giant plasma membrane vesicles from RBL-2H3 cells into detergent-resistant membrane fractions and liquid-ordered/liquid-disordered phases. The results indicated that the analogs were equivalent to native-type GSLs. The analogs could be used to observe the behavior of globo-series GSLs for detailing the structure and biological roles of lipid rafts and GSL-enriched nanodomains during cell differentiation and cell malignancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941013 | PMC |
http://dx.doi.org/10.3390/ijms20246187 | DOI Listing |
Heliyon
April 2024
Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential.
View Article and Find Full Text PDFGlycobiology
April 2024
Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
Cell surface biomarkers are fundamental for specific characterization of human pluripotent stem cells (hPSCs). Importantly, they can be applied for hPSC enrichment and/or purification but also to remove potentially teratoma-forming hPSCs from differentiated populations before clinical application. Several specific markers for hPSCs are glycoconjugates comprising the glycosphingolipid (GSL)-based glycans SSEA-3 and SSEA-4.
View Article and Find Full Text PDFStem Cell Reports
January 2024
The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK. Electronic address:
The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se.
View Article and Find Full Text PDFCarbohydr Res
January 2024
Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan. Electronic address:
Stage-specific embryonic antigens (SSEAs) are carbohydrate markers that have diverse roles in embryonic development. However, the exact roles of SSEAs remain unclear. To obtain mechanistic insights into their roles, we aimed to develop functionalized SSEA glycan analogs via chemical synthesis.
View Article and Find Full Text PDFBiomed J
April 2024
Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, University of California in San Diego, San Diego, CA, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!