Down syndrome (DS), or trisomy 21, is the most prevalent chromosomal anomaly accounting for cognitive impairment and intellectual disability (ID). Neuropathological changes of DS brains are characterized by a reduction in the number of neurons and oligodendrocytes, accompanied by hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS, but underestimated the role of glial cells as pathogenic players. Aberrant or impaired differentiation within the oligodendroglial lineage and altered white matter functionality are thought to contribute to central nervous system (CNS) malformations. Given that white matter, comprised of oligodendrocytes and their myelin sheaths, is vital for higher brain function, gathering knowledge about pathways and modulators challenging oligodendrogenesis and cell lineages within DS is essential. This review article discusses to what degree DS-related effects on oligodendroglial cells have been described and presents collected evidence regarding induced cell-fate switches, thereby resulting in an enhanced generation of astrocytes. Moreover, alterations in white matter formation observed in mouse and human post-mortem brains are described. Finally, the rationale for a better understanding of pathways and modulators responsible for the glial cell imbalance as a possible source for future therapeutic interventions is given based on current experience on pro-oligodendroglial treatment approaches developed for demyelinating diseases, such as multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953000 | PMC |
http://dx.doi.org/10.3390/cells8121591 | DOI Listing |
Front Neurosci
January 2025
Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
[This corrects the article DOI: 10.3389/fnins.2024.
View Article and Find Full Text PDFPol J Radiol
December 2024
First Hospital of Shanxi Medical University, Shanxi, China.
Purpose: Isocitrate dehydrogenase (IDH) mutation status serves as a crucial prognostic indicator for glioma, typically assessed via immunohistochemical analysis post-surgery. Given the invasiveness of this approach, perhaps we can utilise convenient and noninvasive magnetic resonance imaging (MRI) methods to predict IDH mutation status. However, the current landscape lacks a standardised MRI technique for accurately predicting IDH mutations.
View Article and Find Full Text PDFJ Psychiatry Neurosci
January 2025
From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Background: White matter damage is closely associated with cognitive and psychiatric symptoms and is prevalent in cerebral small vessel disease (CSVD); although the pathophysiological mechanisms involved in CSVD remain elusive, inflammation plays a crucial role. We sought to investigate the relationship between systemic inflammation markers and imaging markers of CVSD, namely white matter hyperintensity (WMH) and microstructural injury.
Methods: We conducted a study involving both cross-sectional and longitudinal data from the UK Biobank Cohort.
J Clin Neurosci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China. Electronic address:
Objectives: This study investigated the correlation between retinal vasculature and cerebral small vessel disease (CSVD) imaging markers, providing new evidence for the retina-brain association.
Methods: Two hundred and thirty-nine participants aged 55-85 were enrolled in the study. CSVD indicators, encompassing white matter hyperintensities (WMHs), lacunes (LAs), cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVSs), were assessed.
Ann Am Thorac Soc
January 2025
University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, California, United States.
Rationale: Globally, in 2019, chronic obstructive pulmonary disease (COPD) was the third leading cause of death. While tobacco smoking is the predominant risk factor, the role of long-term air pollution exposure in increasing risk of COPD remains unclear. Moreover, there are few studies that have been conducted in racial and ethnic minoritized and socioeconomically diverse populations, while accounting for smoking history and other known risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!