Participation of the miR-22-HDAC4-DLCO Axis in Patients with COPD by Tobacco and Biomass.

Biomolecules

Cellular Biology Laboratory, Department of Research in Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico.

Published: December 2019

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation and systemic inflammation. The main causes of COPD include interaction between genetic and environmental factors associated with tobacco smoking (COPD-TS) and/or exposure to biomass smoke (COPD-BS). Several microRNAs (miRNAs) control posttranscriptional regulation of COPD-TS associated gene expression. The miR-22-HDAC4-IL-17 axis was recently characterized. It is still unknown, however, whether this axis, participates in COPD-BS. To investigate, 50 patients diagnosed with severe-to-very severe COPD GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages III/IV, were recruited, 25 women had COPD-BS (never smokers, exposed heavily to BS) and 25 had COPD-TS. Serum levels of miRNA-22-3p were measured by RT (Reverse Transcription)-qPCR, while the concentration of HDAC4 (Histone deacetylase 4) was detected by ELISA. Additionally, we looked for association between serum HDAC4 and DLCOsb (Single-breath diffusing capacity of the lung for carbon monoxide), as % of predicted by age, height, and gender, one of the main differences described between COPD-BS and COPD-TS. Women with COPD-BS were older and shorter and had a higher DLCOsb %P (percent predicted) compared to COPD-TS. Serum miR-22-3p was downregulated in COPD-BS relative to COPD-TS. In contrast, the concentration of HDAC4 was higher in COPD-BS compared to COPD-TS. Furthermore, a positive correlation between serum HDAC4 levels and DLCOsb %P was observed. We concluded that the miR-22-HDAC4-DLCO axis behaves differently in patients with COPD-BS and COPD-TS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995507PMC
http://dx.doi.org/10.3390/biom9120837DOI Listing

Publication Analysis

Top Keywords

mir-22-hdac4-dlco axis
8
chronic obstructive
8
copd-ts
8
copd-bs
8
women copd-bs
8
copd-ts serum
8
concentration hdac4
8
serum hdac4
8
copd-bs copd-ts
8
compared copd-ts
8

Similar Publications

Participation of the miR-22-HDAC4-DLCO Axis in Patients with COPD by Tobacco and Biomass.

Biomolecules

December 2019

Cellular Biology Laboratory, Department of Research in Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico.

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation and systemic inflammation. The main causes of COPD include interaction between genetic and environmental factors associated with tobacco smoking (COPD-TS) and/or exposure to biomass smoke (COPD-BS). Several microRNAs (miRNAs) control posttranscriptional regulation of COPD-TS associated gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!