The applicability of mesoscopic models plays an important role in studying the mesoscopic mechanical properties of concrete. In this study, the computerized tomography (CT) test of concrete under uniaxial compression conditions is conducted using a portable dynamic loading equipment developed by Xi'an University of Technology and a medical Marconi M8000 spiral CT scanner. On the basis of damage partition theory, a probabilistic statistical method for determining threshold values is proposed, and a CT test images is obtained and divided into aggregate, hardened cement and hole-crack areas. A 'structural random numerical concrete model' is also established on the basis of the coordinates of each pixel unit in CT images. Uniaxial static compression and tensile numerical simulation tests are conducted. Results show that the structural random numerical concrete model can not only reflect the microscopic composition of concrete but also the interfacial transition zone (ITZ) between aggregate and mortar. The ITZ thickness is approximately 0.04 mm, which is close to the real concrete sample ITZ thickness (approximately 10-50 μm). In the two tests, the specimen damage starts from the initial defects, and the damage crack expands through the weaker ITZ around the aggregate. No matter under the action of static tension or compression load, the damage cracks of the sample almost never pass through the aggregate. Most of the many cracks in uniaxial compression are shear cracks. However, many cracks form at the beginning of uniaxial tension, and only one main crack, which is roughly perpendicular to the loading direction, exists in the end.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947199 | PMC |
http://dx.doi.org/10.3390/ma12244070 | DOI Listing |
iScience
January 2025
College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China.
The orthogonal product set with quantum nonlocality can enhance the confidentiality of information without consuming entanglement resources. The confidentiality increases with the reinforcement of its nonlocality. However, the orthogonal product sets with the strongest nonlocality need an enormous number of quantum states.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Wanstead P.O. Box 64, Barbados.
A computational study of X-H···Y binary hydrogen-bonded complexes was undertaken to examine the red- and blue-shifting behavior of three model X-H proton donors interacting with a series of Lewis bases: Y = NH, NCLi, NCH, NCF, CH, BF, CO, N and Ne. Two of these proton donors, FArH and FCH, have blue-shifting tendencies, while the third, FH, has red-shifting tendencies. A perturbation theory model for frequency shifts that was derived many years ago was employed to partition the predicted frequency shift into the sum of two components, one dependent on the second derivative of the interaction energy with respect to X-H displacement and the other dependent on the X-H bond length change in the binary complex.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!