Fusion of the Global Positioning System (GPS) and Inertial Navigation System (INS) for navigation of ground vehicles is an extensively researched topic for military and civilian applications. Micro-electro-mechanical-systems-based inertial measurement units (MEMS-IMU) are being widely used in numerous commercial applications due to their low cost; however, they are characterized by relatively poor accuracy when compared with more expensive counterparts. With a sudden boom in research and development of autonomous navigation technology for consumer vehicles, the need to enhance estimation accuracy and reliability has become critical, while aiming to deliver a cost-effective solution. Optimal fusion of commercially available, low-cost MEMS-IMU and the GPS may provide one such solution. Different variants of the Kalman filter have been proposed and implemented for integration of the GPS and the INS. This paper proposes a framework for the fusion of adaptive Kalman filters, based on Sage-Husa and strong tracking filtering algorithms, implemented on MEMS-IMU and the GPS for the case of a ground vehicle. The error models of the inertial sensors have also been implemented to achieve reliable and accurate estimations. Simulations have been carried out on actual navigation data from a test vehicle. Measurements were obtained using commercially available GPS receiver and MEMS-IMU. The solution was shown to enhance navigation accuracy when compared to conventional Kalman filter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961001PMC
http://dx.doi.org/10.3390/s19245357DOI Listing

Publication Analysis

Top Keywords

ground vehicle
8
accuracy compared
8
mems-imu gps
8
kalman filter
8
mems-imu
5
gps
5
navigation
5
adaptive filtering
4
filtering gps-aided
4
gps-aided mems-imu
4

Similar Publications

In recent years, as an important part of precision agricultural aviation, the plant protection unmanned aerial vehicle (UAV) has been widely studied and applied worldwide, especially in East Asia. Banana, as a typical large broad-leaved crop, has high requirements for pests and diseases control. The mechanization degree of plant protection management in banana orchard is low.

View Article and Find Full Text PDF

Precise segmentation of unmanned aerial vehicle (UAV)-captured images plays a vital role in tasks such as crop yield estimation and plant health assessment in banana plantations. By identifying and classifying planted areas, crop areas can be calculated, which is indispensable for accurate yield predictions. However, segmenting banana plantation scenes requires a substantial amount of annotated data, and manual labeling of these images is both timeconsuming and labor-intensive, limiting the development of large-scale datasets.

View Article and Find Full Text PDF

Introduction: Subsea applications recently received increasing attention due to the global expansion of offshore energy, seabed infrastructure, and maritime activities; complex inspection, maintenance, and repair tasks in this domain are regularly solved with pilot-controlled, tethered remote-operated vehicles to reduce the use of human divers. However, collecting and precisely labeling submerged data is challenging due to uncontrollable and harsh environmental factors. As an alternative, synthetic environments offer cost-effective, controlled alternatives to real-world operations, with access to detailed ground-truth data.

View Article and Find Full Text PDF

This study investigates the aerodynamic and aeroacoustic behavior of propellers operating in ground-effect conditions, with an emphasis on the impact of porous ground surface treatments. The investigation explores the potential of porous materials to reduce propeller noise near the ground, a major barrier to the acceptance and integration of Urban Air Mobility (UAM) systems. Experiments were conducted in an anechoic chamber using an APC [Formula: see text] inch propeller in a pusher configuration.

View Article and Find Full Text PDF

Dynamic docking algorithm for UGV to UAV based on single planning under disturbed conditions.

ISA Trans

December 2024

State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, School of Automation, Beijing, China.

This paper investigates the initial dynamic docking problem to mobile and trajectory-disturbed targets for tracking and recovering drones by Unmanned Ground Vehicles (UGVs). First, the target status is estimated by employing the Extended Kalman Filter (EKF). Then, the drone's perturbation is mapped to a dynamic docking point, quantifying the target motion deviation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!