Specific BK Channel Activator NS11021 Protects Rat Renal Proximal Tubular Cells from Cold Storage-Induced Mitochondrial Injury In Vitro.

Biomolecules

Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, USA.

Published: December 2019

AI Article Synopsis

Article Abstract

Kidneys from deceased donors used for transplantation are placed in cold storage (CS) solution during the search for a matched recipient. However, CS causes mitochondrial injury, which may exacerbate renal graft dysfunction. Here, we explored whether adding NS11021, an activator of the mitochondrial big-conductance calcium-activated K (mitoBK) channel, to CS solution can mitigate CS-induced mitochondrial injury. We used normal rat kidney proximal tubular epithelial (NRK) cells as an in vitro model of renal cold storage (18 h) and rewarming (2 h) (CS + RW). Western blots detected the pore-forming α subunit of the BK channel in mitochondrial fractions from NRK cells. The fluorescent K-binding probe, PBFI-AM, revealed that isolated mitochondria from NRK cells exhibited mitoBK-mediated K uptake, which was impaired ~70% in NRK cells subjected to CS + RW compared to control NRK cells maintained at 37 °C. Importantly, the addition of 1 M NS11021 to CS solution prevented CS + RW-induced impairment of mitoBK-mediated K uptake. The NS11021-treated NRK cells also exhibited less cell death and mitochondrial injury after CS + RW, including mitigated mitochondrial respiratory dysfunction, depolarization, and superoxide production. In summary, these new data show for the first time that mitoBK channels may represent a therapeutic target to prevent renal CS-induced injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995623PMC
http://dx.doi.org/10.3390/biom9120825DOI Listing

Publication Analysis

Top Keywords

nrk cells
24
mitochondrial injury
16
proximal tubular
8
cold storage
8
cells exhibited
8
mitobk-mediated uptake
8
cells
7
mitochondrial
7
nrk
6
injury
5

Similar Publications

The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M.

View Article and Find Full Text PDF

Introduction: 5-methoxytryptophan (5-MTP) is an anti-inflammatory metabolite. Several recent reports indicate that 5-MTP protects against post-injury tissue fibrosis. It was unclear how 5-MTP controls tissue fibrosis.

View Article and Find Full Text PDF

The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.

View Article and Find Full Text PDF

Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.

View Article and Find Full Text PDF

Association between mitophagy and inflammasome in uric acid nephropathy.

Ren Fail

December 2024

Department of Nephrology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China.

Objective: This study was recruited to investigate the role of mitophagy in activating NLRP3 inflammasome in the kidney of uric acid (UA) nephropathy (UAN) rats.

Methods: This study developed a uric acid nephropathy (UAN) rat model divided into five groups: Negative control (NC), UAN model (M), UAN + autophagy inhibitor (3-MA), UAN + lysosome inhibitor (CQ), and ROS scavenger (N-acetylcysteine, N). H&E staining assessed renal structure, ROS levels were measured with 2, 7dichlorofluorescin diacetate, and ELISA measured serum markers (, , cystatin , , , ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!