Optimization and Validation of an Adjustable Activity Classification Algorithm for Assessment of Physical Behavior in Elderly.

Sensors (Basel)

Department of Nutrition and Movement Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.

Published: December 2019

Due to a lack of transparency in both algorithm and validation methodology, it is difficult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (±10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961012PMC
http://dx.doi.org/10.3390/s19245344DOI Listing

Publication Analysis

Top Keywords

simulated free-living
16
free-living conditions
12
activity classification
8
algorithm
8
classification algorithm
8
researchers clinicians
8
physical activity
8
standing sedentary
8
sedentary behavior
8
algorithm performance
8

Similar Publications

Background: U.S. Immigration and Customs Enforcement (ICE) facilities had high rates of COVID-19 infections and mortality during the global pandemic.

View Article and Find Full Text PDF

Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments.

Proc Natl Acad Sci U S A

January 2025

Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.

View Article and Find Full Text PDF

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is increasing extreme weather events, which can impact animal social structures and affect disease spread.
  • By studying rhesus macaques before and after a hurricane, research shows that disease transmission rates can double for up to 5 years post-disaster.
  • The hurricane changed how infection risk is spread within the population, highlighting that natural disasters not only threaten wildlife health but also pose risks of disease spilling over to humans.
View Article and Find Full Text PDF

Hot water systems are the most frequent environment associated with the prevalence and growth of opportunistic premise plumbing pathogens (OPPPs). Previous studies identified water heaters as a source of waterborne diseases and concluded that design variables may contribute to their prevalence. A multifaceted approach was used to investigate the vertical stratification of the microbiome and selected OPPPs in an electric water heater tank connected to a home plumbing system simulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!