A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic Properties of Water Confined in Graphene-Based Membrane: A Classical Molecular Dynamics Simulation Study. | LitMetric

Dynamic Properties of Water Confined in Graphene-Based Membrane: A Classical Molecular Dynamics Simulation Study.

Membranes (Basel)

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 5825, Qatar.

Published: December 2019

AI Article Synopsis

  • - We conducted molecular dynamics simulations of water in a hydrophobic graphene membrane, revealing that water molecules form stable droplets through hydrogen bonding as their density decreases, moving as a whole rather than dispersing.
  • - The study found that the larger the water droplet, the slower its translational motion along the graphene surface due to strong van der Waals interactions, and that the lifetime of hydrogen bonds increases in lower water densities due to restricted molecular movement.
  • - We also determined that the ideal spacing for desalination in the graphene sheets is approximately 10 Å, where water can easily penetrate (minimum distance of 7 Å) while sodium and chloride ions face significant energy barriers, suggesting potential for improved graphene-based desalination membranes.

Article Abstract

We performed molecular dynamics simulations of water molecules inside a hydrophobic membrane composed of stacked graphene sheets. By decreasing the density of water molecules inside the membrane, we observed that water molecules form a droplet through a hydrogen bond with each other in the hydrophobic environment that stacked graphene sheets create. We found that the water droplet translates as a whole body rather than a dissipate. The translational diffusion coefficient along the graphene surface increases as the number of water molecules in the droplet decreases, because the bigger water droplet has a stronger van der Waals interaction with the graphene surface that hampers the translational motion. We also observed a longer hydrogen bond lifetime as the density of water decreased, because the hydrophobic environment limits the libration motion of the water molecules. We also calculated the reorientational correlation time of the water molecules, and we found that the rotational motion of confined water inside the membrane is anisotropic and the reorientational correlation time of confined water is slower than that of bulk water. In addition, we employed steered molecular dynamics simulations for guiding the target molecule, and measured the free energy profile of water and ion penetration through the interstice between graphene sheets. The free energy profile of penetration revealed that the optimum interlayer distance for desalination is ~10 Å, where the minimum distance for water penetration is 7 Å. With a 7 Å interlayer distance between the graphene sheets, water molecules are stabilized inside the interlayer space because of the van der Waals interaction with the graphene sheets where sodium and chloride ions suffer from a 3-8 kcal/mol energy barrier for penetration. We believe that our simulation results would be a significant contribution for designing a new graphene-based membrane for desalination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950170PMC
http://dx.doi.org/10.3390/membranes9120165DOI Listing

Publication Analysis

Top Keywords

water molecules
28
graphene sheets
20
water
16
molecular dynamics
12
graphene-based membrane
8
dynamics simulations
8
molecules inside
8
stacked graphene
8
density water
8
inside membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: