Distress tolerance (DT), a predictor of substance use treatment retention and post-treatment relapse, is associated with task based neural activation in regions located within the salience (SN), default mode (DMN), and executive control networks (ECN). The impact of network connectivity on DT has yet to be investigated. The aim of the present study was to test within and between network resting-state functional connectivity (rsFC) associations with DT, and the impact of cocaine use on this relationship. Twenty-nine adults reporting regular cocaine use (CU) and 28 matched healthy control individuals (HC), underwent resting-state functional magnetic resonance imaging followed by the completion of two counterbalanced, computerized DT tasks. Dual-regression analysis was used to derive within and between network rsFC of the SN, DMN, and lateralized (left and right) ECN. Cox proportional-hazards survival models were used to test the interactive effect of rsFC and group on DT. The association between cocaine use severity, rsFC, and DT was tested within the CU group. Lower LECN and higher DMN-SN rsFC were associated with DT impairment. Greater amount of cocaine use per using day was associated with greater DMN-SN rsFC. The findings emphasize the role of neural resource allocation within the ECN and between DMN-SN on distress tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947426PMC
http://dx.doi.org/10.3390/jcm8122135DOI Listing

Publication Analysis

Top Keywords

distress tolerance
12
resting-state functional
8
dmn-sn rsfc
8
rsfc
6
cocaine
5
triple network
4
network resting
4
resting state
4
state connectivity
4
connectivity predicts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!