The use of supplementary cementitious materials such as fly ash, slag, and silica fume improve reinforced concrete corrosion performance, while decreasing cost and reducing environmental impact compared to ordinary Portland cement. In this study, the corrosion behavior of AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS) reinforcements was studied for 365 days. Three different concrete mixtures were tested: 100% CPC (composite Portland cement), 80% CPC and 20% silica fume (SF), and 80% CPC and 20% fly ash (FA). The concrete mixtures were designed according to the ACI 211.1 standard. The reinforced concrete specimens were immersed in a 3.5 wt.% NaCl test solution to simulate a marine environment. Corrosion monitoring was evaluated using the corrosion potential () according to ASTM C876 and the linear polarization resistance (LPR) according to ASTM G59. The results show that AISI 304 SS reinforcements yielded the best corrosion behavior, with values mainly pertaining to the region of 10% probability of corrosion, and corrosion current density () values indicating passivity after 105 days of experimentation and low probability of corrosion for the remainder of the test period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926658PMC
http://dx.doi.org/10.3390/ma12234007DOI Listing

Publication Analysis

Top Keywords

silica fume
12
fly ash
12
corrosion behavior
12
aisi 304
12
corrosion
9
behavior aisi
8
reinforced concrete
8
portland cement
8
concrete mixtures
8
80% cpc
8

Similar Publications

Sisal fiber moisture sensitivity and degradation are treated by alkaline and pozzolanic methods, such as silica fume and kaolin surface coating. However, it is novel that the treatment of sisal fiber by calcined bentonite slurry can coat sisal fiber from moisture and protect it from cement hydration by consuming free lime and reducing cement matrix alkalinity. Therefore, the present study treated sisal fibers with calcined bentonite slurry and investigated the effect of using different lengths and doses of treated and raw sisal fibers in a mortar.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Fly ash-cement composite backfill slurry, prepared by partially replacing cement with fly ash, has been demonstrated to effectively reduce the mine backfill costs and carbon emissions associated with cement production. However, the use of fly ash often results in insufficient early and medium-term strength of the backfill material. To address the demand for high medium-term strength in backfill materials under continuous mining and backfilling conditions, this study developed a silica fume-fly ash-cement composite backfill slurry.

View Article and Find Full Text PDF

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!