Our previous studies revealed RBM8A may play a role in various progressive neurological diseases. The present study aimed to explore the role of RBM8A in Alzheimer's disease (AD). RBM8A is significantly down-regulated in AD. Interestingly, 9186 differentially expressed genes are overlapped from comparisons of AD versus control and RBM8A-low versus RBM8A-high. Weight gene correlation analysis was performed and 9 functional modules were identified. Modules positively correlated with AD and RBM8A-low are significantly involved in the RAP1 signaling pathway, PI3K-AKT signaling pathway, hematopoietic cell lineage, autophagy and APELIN signaling pathway. Fifteen genes (RBM8A, RHBDF2, TNFRSF10B, ACP1, ANKRD39, CA10, CAMK4, CBLN4, LOC284214, NOVA1, PAK1, PPEF1, RGS4, TCEB1 and TMEM118) are identified as hub genes, and the hub gene-based LASSO model can accurately predict the occurrence of AD (AUC = 0.948). Moreover, the RBM8A-module-pathway network was constructed, and low expression of RBM8A down-regulates multiple module genes, including FIP200, Beclin 1, NRBF2, VPS15 and ATG12, which composes key complexes of autophagy. Thus, our study supports that low expression of RBM8A correlates with the decrease of the components of key complexes in autophagy, which could potentially contribute to pathophysiological changes of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932873 | PMC |
http://dx.doi.org/10.18632/aging.102571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!