The effects of endocrine disruption with respect to potential human toxicities have been extensively evaluated to date. However, the standard testing methods used have not always taken the most pertinent approach. In this study, we used juvenile male tilapia (Oreochromis niloticus) as an animal model to test for endocrine disruption by chemicals. We measured 17β-estradiol (E2) concentrations, and the mRNA relative expression ratio (RER; treatment/control) of vitellogenin (vtg2) and estrogen receptors (ERs) to assess whether the effluent concentration of selected plasticizers disrupt E2 function in fish. We found that the vtg2 RER was significantly increased after exposure to 2.52 nM E2 for 5 days, 0.438 μM of bisphenol A (BPA) for 7 days, or 2.865 μM Cd for 7 days. These data support vtg2 transcript level as a sensitive biomarker to evaluate contamination of water by endocrine disrupting chemicals (EDCs). However, vtg2 expression did not respond to fluctuations of E2 concentrations in the tilapia juveniles exposed to selected plasticizers. However, the RER of three types of ERs appeared to change dramatically upon exposure to plasticizers. ERα significantly increased, but ERβ2 decreased with 3.6 μM DEP exposure. Both ERα and ERβ2 decreased significantly after 1.44 μM DIBP exposure. We suggest that changes of vtg2 mRNA RER, E2 levels and ERs mRNA expression should be taken into consideration at the same time to determine if chemical contaminants in the water are endocrine disrupters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2019.108682DOI Listing

Publication Analysis

Top Keywords

endocrine disruption
8
selected plasticizers
8
water endocrine
8
erβ2 decreased
8
vtg2
5
changes vitellogenin
4
vitellogenin estrogen
4
estrogen receptor
4
expression
4
receptor expression
4

Similar Publications

Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.

View Article and Find Full Text PDF

Maternal exposure to bisphenol A induces congenital heart disease through mitochondrial dysfunction.

FASEB J

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks.

View Article and Find Full Text PDF

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

Blood Trihalomethanes and Human Cancer: A Systematic Review and Meta-Analysis.

Toxics

January 2025

School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China.

The control of waterborne diseases through water disinfection is a significant advancement in public health. However, the disinfection process generates disinfection by-products (DBPs), including trihalomethanes (THMs), which are considered to influence the occurrence of cancer. This analysis aims to quantitatively evaluate the relationship between blood concentrations of THMs and cancer.

View Article and Find Full Text PDF

Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!