A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. | LitMetric

One of the most effective approaches for treatment of cartilage involves the use of porous three-dimensional scaffolds, which are useful for improving not only cellular adhesion but also mechanical properties of the treated tissues. In this study, we manufactured a composite scaffold with optimum properties to imitate nasal cartilage attributes. Cartilage extracellular matrix (ECM) was used in order to improve the cellular properties of the scaffolds; while, chitosan and agarose were main materials that are used to boost the mechanical and rheological properties of the scaffolds. Furthermore, we explored the effect of the various weight ratios of chitosan, agarose, and ECM on the mechanical and biomedical properties of the composite scaffolds using the Taguchi method. The resulting composites display a range of advantages, including good mechanical strength, porous morphology, partial crystallinity, high swelling ratio, controlled biodegradability rate, and rheological characteristics. Additionally, we performed the cytotoxicity tests to confirm the improvement of the structure and better cell attachments on the scaffolds. Our findings illustrate that the presence of the ECM in chitosan/agarose structure improves the biomedical characteristics of the final scaffold. In addition, we were able to control the mechanical properties and microstructure of the scaffolds by optimizing the polymers' concentration and their resulting interactions. These results present a novel scaffold with simultaneously enhanced mechanical and cellular attributes comparing to the scaffolds without ECM for nasal cartilage tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.040DOI Listing

Publication Analysis

Top Keywords

scaffolds
8
extracellular matrix
8
tissue engineering
8
engineering applications
8
mechanical properties
8
nasal cartilage
8
properties scaffolds
8
chitosan agarose
8
mechanical
6
properties
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!